Cureus | Bio-responsive polymer hydrogels homeostatically regulate blood coagulation
Research Article

Bio-responsive polymer hydrogels homeostatically regulate blood coagulation



Abstract

Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which—in turn—becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules. Implementing biomolecular recognition mechanisms in synthetic materials may enable a wealth of biomedical and related applications. Here Maitz et al. present a bio-responsive hydrogel that releases the anticoagulant heparin in amounts proportional to the environmental levels of the procoagulatory protein thrombin.


Share