Cureus | Cryotomography of Budding Influenza A Virus Reveals Filaments with Diverse Morphologies that Mostly Do Not Bear a Genome at Their Distal End
Research Article

Cryotomography of Budding Influenza A Virus Reveals Filaments with Diverse Morphologies that Mostly Do Not Bear a Genome at Their Distal End



Abstract

Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process.Author SummaryInfluenza viruses that have been cultivated in the laboratory usually produce particles that are spherical. However, viruses isolated from patients frequently produce long filamentous particles, as well as smaller elliptical particles that we term “bacilliform virions”. Long filaments may be important for cell-to-cell transmission or facilitate release of the smaller particles by disrupting the mucous layer of the respiratory tract. We have used three-dimensional electron microscopy to investigate the structure of influenza virus filaments ‘budding’ from cells. We found that many of the long filaments had a large bulbous head at the end furthest from the cell. Many of these bulbs were empty while some contained tubules that we believe are made of a scaffold-protein M1 that usually lines the inner surface of the viral membrane. Bacilliform virions contain genomes comprised of eight segments of RNA; these are each wrapped up in protein and packaged in an ordered manner. None of the bulb-headed filaments and very few narrower ones had this feature. We hypothesise that the diverse viral structures we have seen suggest distinct assembly pathways and moreover functions. Long filamentous structures that do not appear to contain genomes may combat the immune response or help the smaller virus particles spread.


Share