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Abstract
Background and objective
Glass ionomer cement (GIC), also known as polyalkenoate cement, has been extensively used in dentistry for
both luting and restorative purposes. Despite being the first choice for aesthetic restorations due to their
chemical bonding ability to teeth, GICs have faced challenges such as low mechanical properties, abrasion
resistance, and sensitivity to moisture, leading to the search for improved materials. 

This study aims to assess the effects of thermocycling on the compressive, flexural strength, and
microhardness of green-mediated nanocomposite-modified GIC in comparison to traditional GIC.

Methodology
Green-mediated nanoparticles, consisting of chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-
HA), were synthesized using a one-pot synthesis technique to form nanocomposites. These nanocomposites
were then incorporated into GIC specimens in varying concentrations (3%, 5%, and 10%), denoted as Group
I, Group II, and Group III, respectively. Group IV served as the control, consisting of conventional GIC. To
assess the performance of the novel restorative materials over an extended period, compressive strength,
flexural strength, and microhardness were measured before and after thermocycling using a universal
material testing machine. Furthermore, scanning electron microscopy (SEM) analysis was carried out
following the thermocycling process. The collected data were subjected to statistical analysis through one-
way analysis of variance (ANOVA) and paired t-tests.

Results 
The findings demonstrated that, in comparison to the control group, both the mean compressive strength
and flexural strength, as well as hardness, were notably higher for the 10% and 5% nanocomposite-modified
GIC specimens before and after thermocycling (P < 0.05). Notably, there was no notable difference observed
between the 5% and 10% concentrations (P > 0.05). These results suggest that incorporating green-mediated
nanocomposites (Ch-Ti-Zr-HA) modified GIC at either 5% or 10% concentration levels leads to improved
mechanical properties, indicating their potential as promising alternatives in dental restorative materials.

Conclusions
Based on our findings, it can be inferred that the 10% and 5% concentrations of green-mediated (Ch-Ti-Zr-
HA) modified GIC exhibit superior compressive and flexural strength compared to conventional GIC.
Additionally, analysis of the scanning electron microscope (SEM) morphology revealed that green-mediated
GIC displays smoother surface characteristics in contrast to conventional GIC. These results underscore the
potential advantages of utilizing green-mediated nanocomposite-modified GIC in dental applications,
suggesting enhanced mechanical properties and surface quality over conventional.

Categories: Dentistry
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Introduction
Glass ionomer cement (GIC) exhibits distinctive features such as anti-cariogenic properties and chemical
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adhesion to tooth structure. However, it also exhibits limitations in clinical use due to limited wear
resistance, fracture toughness, and vulnerability to early moisture sensitivity [1,2]. These drawbacks have
constrained their application in stress-bearing areas, necessitating further advancement of GIC. Attempts
have been undertaken to enhance the strength of GIC by incorporating various filler materials [3-5].
However, concerns regarding the chemical composition and potential toxicity of these additives remain a
topic of debate, hindering their market acceptance. Recent research has shown that the inclusion of
nanoparticles like hydroxyapatite (HA), produced through soft chemistry processes to create nanoscale
particles, has the potential to enhance GIC properties [6]. Additionally, a study by Ibrahim et al.
demonstrated that GIC modified with chitosan and TiO2 nanopowder exhibits superior mechanical

properties [7]. Therefore, this study focuses on synthesizing nanocomposite chitosan, titanium, zirconia,
and hydroxyapatite (Ch-Ti-Zr-HA) using green synthesis methods, thereby modifying it with GIC to assess
its mechanical properties.

The clinical effectiveness of a dental material is determined by its capacity to withstand the stresses and
strains encountered during mastication and routine oral functions. Therefore, strength is of paramount
importance when selecting a restorative material, as higher strength is better equipped to withstand
deformation and fractures, thus minimizing the risk of failure. Hence, compressive strength and flexural
strength are commonly assessed mechanical properties in GIC. Additionally, scanning electron microscopy
(SEM) serves as an effective technique for examining the surface characteristics, filler content, size, and
interface of restorations. SEM is particularly useful for identifying the types of failures experienced by
restorations, as well as surface modifications and wear [8].

When a restorative material is exposed to the oral environment over a prolonged period, various changes
can occur in its properties. Additionally, thermal stresses encountered during normal oral functions can
disrupt the structure of restorative materials and potentially impact their mechanical properties. Numerous
studies have investigated the effects of thermal stresses on restorative materials [9,10]. Therefore,
characterizing dental restorative materials using thermocycling provides a better simulation of their clinical
service life and enhances understanding of their behavior in such conditions. Accordingly, the objective of
this study was to evaluate the impact of green-mediated nanocomposite (Ch-Ti-Zr-HA) modified GIC
compared to conventional GIC on mechanical strength (compressive and flexural strength) and
microhardness before and after thermocycling. The null hypotheses were that green-mediated
nanocomposite-modified GIC would not affect mechanical strength and microhardness compared to
conventional GIC before and after thermocycling.

Materials And Methods
Estimation of sample size and study design
Ethical approval was granted, and the study was registered with the research center under the code
SRB/SDC/UG-2086/23/PEDO/139. The sample size calculation was conducted using the GPower sample
power calculator. It indicated that for a sample power of 0.95 (95% confidence interval) and an effect size of
0.6, each group would need to include 48 samples.

Preparation of green-mediated Ch-Ti-Zr-HA nanoparticles 
Chitosan nanoparticles were prepared by stirring a mixture of 50 mL eucalyptus extract and 50 mL chitosan
solution, which consisted of 0.5 g chitosan powder mixed with 0.5 g glacial acetic acid and 49 mL distilled
water, using a magnetic stirrer. Next, titanium oxide nanoparticles were synthesized by combining 50 mL
neem extract with 50 mL of 50 mM TiO2 solution and stirring the mixture with a rotating magnet. Then,

zirconium oxide nanoparticles were prepared by adding 50 mL aloe vera extract to 50 mL of 20 nM zirconium
oxide solution, continuously stirring the mixture at 340-350 °C with a magnetic stirrer, and allowing it to
stand overnight. Lastly, HA nanoparticles were obtained by mixing 50 mL Moringa oleifera extract (1 g) with
50 mL of 0.1 g HA synthesized from eggshell. Orthophosphoric acid, with a molar ratio of 1.67 Ca/P, was
added dropwise, stirred, and left to stand overnight.

Preparation of green-mediated Ch-Ti-Zr-HA nanocomposites
The nanocomposites were fabricated using a one-pot synthesis method [11]. The resulting solutions were
vigorously stirred at 80 °C for 30 minutes. Subsequently, 1.08 mL of ethanol was introduced into the
mixture, followed by vigorous stirring at 80 °C under reflux conditions for 90 minutes. Following the removal
of ethanol at 80 °C for 30 minutes, the solution was subjected to lyophilization in a freeze dryer for 48 hours
at -92 °C to yield a fine powder. This gentle freeze-drying process aimed to improve the long-term stability
of the nanoparticles while retaining their biochemical properties.

Preparation of green-mediated nanocomposite (Ch-Ti-Zr-HA) modified
GIC specimen
Green-mediated nanocomposites consisting of Ch-Ti-Zr-HA were integrated into GIC at concentrations of
3% (Group I), 5% (Group II), and 10% (Group III). Additionally, a control group, Group IV, was included,

2024 Ravi et al. Cureus 16(3): e56078. DOI 10.7759/cureus.56078 2 of 10

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


which utilized conventional GIC without any modifications. The powder components of the nanocomposites
and the conventional GIC were combined with the polyacrylic acid-based liquid to produce the restorative
cement.

Micromorphology analysis
SEM analysis of GIC specimens was modified with green-mediated nanocomposites. Initially, each specimen
underwent rinsing with sterile x1 phosphate-buffered saline (PBS). The specimens were soaked in
glutaraldehyde (2.5%) in PBS for four hours at 48 °C, followed by 10-minute rinses with x1 PBS. Next, the
specimens underwent treatment with osmium tetroxide (1%) for an hour, followed by 10-minute rinses in x1
PBS and a final rinse with distilled water. Dehydration was accomplished through a graded ethanol process
at room temperature. The dehydrated specimens were then dried, mounted onto SEM aluminum stubs, and
coated with gold-palladium for 100 seconds under vacuum conditions. SEM was utilized for examination,
operating at an accelerating voltage of 10 KV and capturing representative areas at 33,000 magnifications.
Additionally, one sample from each group underwent a similar process, including dehydration and gold
sputtering, and was examined at x1,000 magnification using SEM for more detailed analysis. This
comprehensive protocol ensured a thorough evaluation of the structural characteristics of the specimens.

Thermocycling 
During the research, samples were subjected to thermocycling using a Lab Thermostatic Bath within a
thermocycler. The water baths were consistently set at 55°C throughout the thermocycling process, which
consisted of 30,000 cycles at this temperature, each lasting 15 seconds. Continuous monitoring was carried
out to ensure the stability of both temperature and dwell time. After the thermocycling process was
completed, the specimens were examined for any visible changes, and the collected data, which included
assessments of structural integrity, surface morphology, and material properties were analyzed (Figure 1).

FIGURE 1: Samples undergoing immersion within a thermocycler.

Assessment of compressive strength
The assessment of compressive strength for the specimens was conducted at a standard temperature of 23 ±
1 °C following the guidelines outlined in ISO 9917-1:2007. Cylindrical molds (4.0 mm x 6.0 mm ) were
prepared, yielding approximately 12 specimens for each group. After introducing the materials into the
molds and ensuring a level surface, the specimens were left in the molds for an hour. Subsequently, they
were removed and immersed in deionized water for 24 hours to assess compressive strength. Any specimens
displaying deformation or voids were excluded. The specimens were vertically aligned in the universal
testing machine (UTM-Instron, E3000). Compressive strength was assessed by loading the specimens until
fracture at a crosshead speed of 1 mm/minute and fracture load was calculated (Figure 2).
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FIGURE 2: Compressive strength analysis performed with UTM.
UTM, universal testing machine

Assessment of flexural strength
Flexural strength was evaluated as per ISO 9917-2 guidelines where rectangular specimens (25 × 2 × 2 mm³)
were prepared by mixing the materials as per the manufacturer's instructions. These specimens were then
placed in the molds and gently compressed using a mylar strip. After 10 minutes of setting, the specimens
were removed from the molds and placed in a chamber with elevated humidity at 37 °C for 24 hours.
Defective or voided specimens were discarded. The dimensions of the specimens were measured using a
digital micrometer with a precision of 0.001 mm. Next, the specimens were subjected to a three-point
bending test using a universal testing machine (UTM-Instron, E3000) to assess their flexural strength. The
flexural strength of each specimen was then calculated (Figure 3).

FIGURE 3: Flexural strength analysis performed with UTM.
UTM, universal testing machine

Assessment of microhardness 
In Vickers microhardness testing, a pyramidal diamond with a 136° facing angle is pressed onto a surface
under a specified load for a set duration. The Shimadzu HMV-G31DT Micro Vickers Hardness Tester was used
in this study. The applied force for the microhardness test was HV0.3 (2.942 N), and the indenter was held in
place for 20 seconds. The Vickers microhardness number is calculated by measuring the width of the imprint
left on the surface after the diamond has been removed (Figure 4).
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FIGURE 4: Microhardness analysis performed using a Vickers Hardness
Tester.

Statistical test 
The data collection process was initiated with the utilization of Google Sheets, followed by the importation
of data into IBM SPSS Statistics for Windows, Version 26.0 (IBM Corp., Armonk, NY) for statistical analysis.
The primary objective was to assess statistical significance at a predetermined level of α = 0.05. To analyze
all parameters before and after thermocycling, a one-way ANOVA was conducted. Subsequently, Tukey's
post hoc analysis was utilized to detect any notable discrepancies among the different groups. For a more
detailed examination of the contrast between pre- and post-simulation values, a paired t-test was
performed.

Results
Micromorphological characteristics 
Analysis of GIC using SEM after nanomodification at different concentrations reveals noticeable changes in
surface morphology. Gradual increments in nanomodifier concentration show a clear improvement in
microstructure. SEM images at lower concentrations display a granular surface with scattered nanosized
particles, suggesting subtle modifications to the GIC matrix. Conversely, higher concentrations of
nanomodifiers induce a more pronounced effect, resulting in a denser and uniformly distributed
arrangement of nanoparticles. This translates into a smoother and more compact microstructure, as evident
in SEM images. The heightened surface morphology with escalating concentrations implies a direct
relationship between nanomodifier concentration and structural modifications within GIC. Post-
thermocycling images reveal more cracks in the control group, whereas the modified groups exhibit a denser
morphology. These SEM-based observations highlight the tangible impact of varying nanomaterial
concentrations on GIC surface characteristics. This insight underscores the potential improvement in
mechanical properties and overall performance, positioning SEM as an essential tool for comprehending the
microscale effects of nanomodification on the material (Figure 5).
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FIGURE 5: Representative scanning electron microscopy (SEM) images
of the glass ionomer cement (GIC) surface after thermocycling.
(A) Group I (3%); (B) Group II (5%); (C) Group III (10%); (D) Group IV (control).

Compressive strength, flexural strength, and microhardness
A significant difference was observed in compressive strength, flexural strength, and microhardness
between pre- and post-thermocycling conditions (P = 0.001). In the pre-thermocycling phase, the group with
a 10% concentration exhibited the highest compressive strength (196.45 ± 2.83) and flexural strength (32.67
± 4.76), followed by the 5%, 3%, and control groups, respectively. Following thermocycling, there was a
consistent reduction in compressive strength and flexural strength across all groups, maintaining the same
order, with the 10% group exhibiting the highest compressive strength (196.41 ± 0.83) and flexural strength
(31.88 ± 5.5), followed by the 5%, 3%, and control groups. Increased concentrations of nanocomposites
demonstrated markedly improved microhardness, with the highest observed at 10% (before 50.29 ± 1.35;
after 52.06 ± 4.22), followed by 5%, 3%, and the control group (Table 1).
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Parameter Groups
Before thermocycling (Mean ±
SD)

After thermocycling (Mean ±
SD)

Mean
difference

t-
value

P-
value

Compressive
strength 

3% 178.57 ± 0.10 174.84 ± 6.94 3.73 ± 6.95 8.15 0.090

5% 188.91 ± 2.90 190.10 ± 3.11 1.18 ± 3.91 1.30 0.317

10% 196.45 ± 2.83 196.41 ± 0.83 0.041 ± 2.99 1.96 0.962

Control 167.85 ± 1.02 156.89 ± 14.33 10.96 ± 14.08 19.91 0.021*

Flexural strength

3% 28.10 ± 2.32 26.42 ± 1.31 1.67 ± 2.89 2.00 0.70

5% 30.96 ± 1.65 29.79 ± 1.89 1.16 ± 3.02 1.33 0.208

10% 32.67 ± 4.76 31.88 ± 5.55 0.79 ± 7.60 0.361 0.725

Control 16.86 ± 0.19 10.87 ± 0.92 5.98 ± 0.92 22.45 0.001*

Microhardness

3% 45.54 ± 1.84 46.75 ± 3.74 1.20 ± 3.22 1.29 0.220

5% 48.54 ± 0.86 49.84 ± 3.54 1.30 ± 4.09 1.10 0.295

10% 50.29 ± 1.35 52.06 ± 4.22 1.76 ± 4.55 1.34 0.206

Control 41.61 ± 0.94 42.32 ± 2.36 0.70 ± 2.48 0.98 0.345

TABLE 1: Comparison of strength and microhardness of green-mediated nanocomposite (Ch-Ti-
Zr-HA) modified GIC and conventional GIC before and after thermocycling.
*Statistically significant value of P <0.05. The P-value was derived from a paired t-test

GIC, glass ionomer cement; SD, standard deviation; Ch-Ti-Zr-HA, chitosan, titanium, zirconia, and hydroxyapatite

Pairwise comparison analysis for compressive and flexural strength indicated no significant difference
between the 10% and 5% groups in both pre-simulation and post-simulation scenarios (P > 0.05).
Furthermore, all groups displayed no significant changes in compressive strength, flexural strength, and
microhardness before and after thermocycling for all the modified groups (P > 0.05) (Table 2).

Pairwise comparison Compressive strength Flexural  strength Microhardness

Thermocycling Before After Before After Before After 

Control  vs. 3% 0.001* 0.001* 0.001* 0.001* 0.001* 0.001*

Control vs. 5% 0.001* 0.001* 0.001* 0.001* 0.001* 0.001*

Control  vs. 10% 0.001* 0.001* 0.001* 0.001* 0.001* 0.001*

3% vs. 5% 0.001* 0.001* 0.070 0.045* 0.001* 0.001*

3%  vs. 10% 0.001* 0.001* 0.001 0.001* 0.001* 0.001*

5%  vs. 10% 0.101 0.241 0.440 0.347 0.211 0.091

TABLE 2: Pairwise comparison of strength and microhardness of green-mediated nanocomposite
(Ch-Ti-Zr-HA) modified GIC and conventional GIC before and after thermocycling.
*P-value was significant at 0.05. The P-value was derived from the multiple comparison Tukey HSD test.

GIC, glass ionomer cement; HSD, honestly significant difference; Ch-Ti-Zr-HA, chitosan, titanium, zirconia, and hydroxyapatite
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Discussion
Due to its favorable physical and mechanical characteristics, GIC is commonly employed in permanent
dental restorations. The utilization of nanotechnology in dentistry, particularly the integration of nanosized
particles, has been investigated for caries prevention and reinforcement of polymeric composites [12].
Recent studies have emphasized augmenting the mechanical properties of dental restorative materials like
resin composites by incorporating nanosized particles or nanoclusters. The incorporation of HA, which
influences the bonding reaction mechanism and the formation of polysalt bridges in GIC, contributes to the
improvement of mechanical properties [13]. The incorporation of HA, which influences the bonding reaction
mechanism and the formation of polysalt bridges in GIC, contributes to the improvement of mechanical
properties [13]. In addition, the incorporation of TiO2, which was selected for its chemical stability,

biocompatibility, and nontoxicity [14], further improves the properties of the modified GIC in this study. The
results of this study showed that the control group (conventional GIC) exhibited the lowest compressive
strength compared to the experimental groups. The inferior mechanical properties of GICs are attributed to
their inherent brittleness and potential weaknesses in adhesion between multiple components. In simpler
terms, if the interfacial tension between components is high, this can lead to a deterioration in mechanical
properties. The incorporation of nanoparticles capable of reducing interfacial tension or improving adhesion
between components is therefore promising for increasing overall mechanical performance.

In a study, Sharafeddin et al. investigated the effects of incorporating micro- and nanoparticles of HA into
GIC and found improvements in mechanical properties such as compressive strength, microhardness, and
biaxial flexural strength [15]. Similarly, another study investigated the physical properties of TiO 2

nanoparticle-enriched GIC, which resulted in a significant improvement in Vickers microhardness, flexural
strength, and compressive strength [16]. These results are in agreement with the results of our study.
Moshaverinia et al. demonstrated that cement enriched with nano-HA-fluorapatite exhibited higher
compressive strength, higher tensile strength, and higher flexural strength compared to conventional GIC
[17]. In a previous study, GIC modified solely with nanoparticles and a cellulose nanocomposite showed
higher stress resistance compared to conventional GIC [18,19]. Studies by Moradian et al. showed that the
addition of cellulose nanocrystals in GIC improved the compressive and diametral tensile strength [20].
Allam et al. added 5% chicken eggshell powder to conventional GIC, which resulted in better mechanical
properties [21]. Previous studies by Kheur et al. [6] and Bali et al. [22] showed that HA nanoparticles have a
morphology similar to human enamel and can effectively improve the mechanical properties of GIC. These
findings are consistent with the results of the present study. Singer et al. [23] reported that GIC modified
with plant extract improved flexural strength compared to conventional GIC, which supported our study in
which plant-based nanoparticles were incorporated into GIC. This improvement is attributed to the
chemical composition of the plant, which improves cross-linking, thereby strengthening the mechanical
properties of the cement. In the study by Showkat et al., a significant difference in compressive strength was
observed, indicating the superior performance of GIC modified with titanium and nano-HA, which was
consistent with our study. In addition, GIC modified with TiO2 nanopowder exhibited the highest flexural

strength [13]. Further studies confirmed these results and indicated lower compressive and flexural strength
in conventional GIC [24,25]. In a more recent study by Moheet et al. investigating the hardness of
conventional GIC compared to GIC with 10% nano-HA silica, improved microhardness was also observed,
which is consistent with the results of our study [11]. The improved compressive and flexural strength
observed with nanocomposite-modified GIC can be attributed to the nanoscale particle size, which enables
effective pore filling and leads to increased packing density. This was consistent with the results of our
study, which indicates the positive influence of nanocomposite modification on the strength properties of
GIC.

Thermocycling is used as an accelerated aging method to simulate rapid thermal fluctuations and evaluate
hydrolytic and thermal changes in materials. In our study, samples were subjected to 30,000 thermocycles to
replicate oral environmental conditions. This aging process is crucial for evaluating the strength properties
of restorative materials. The results showed that the compressive and flexural strength of
conventional GIC decreased significantly after thermocycling. However, it was found that thermocycling did
not cause a reduction in compressive strength in nanoparticle-modified GIC materials, which is consistent
with previous research findings [26]. Another study by Souza et al. reported that incorporating nanoscale
inorganic particles such as alumina or zirconia can augment the mechanical attributes of GIC following
thermocycling [27]. Moreover, the SEM images after thermocycling showed smooth surfaces without
microcracks in the 5% modified glass ionomer samples. The topography of the 3% modified sample showed
no significant differences after thermocycling. In contrast, significant cracks and fractures were observed on
the surface of the conventional GIC after thermocycling. It is important to recognize the limitations of the
study, including the inability to accurately replicate the clinical conditions in the test environment.
Variables such as the clinical environment, moisture contamination, and mixing techniques can affect the
physicomechanical properties of dental cement. In addition, factors such as acidic environments could
influence the results, highlighting the need for further research to thoroughly evaluate the long-term
stability of the material. In this study, a novel GIC modified with a nanocomposite (Ch-Ti-Zr-HA) is
presented with superior mechanical properties and SEM morphology, making it a promising material for
restorative dentistry. The modification of GIC powder with the nanocomposite proved to be more successful
in improving the mechanical properties. Despite the promising synergistic effect of the green-mediated
nanocomposite-modified GIC, further clinically oriented studies are recommended. 
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Conclusions
In the context of the present in vitro study, it is noteworthy that the 5% and 10% concentrations of green-
mediated nanocomposite-modified GIC exhibited higher compressive strength, flexural strength, and
microhardness compared to conventional GIC. The application of thermocycling as an in vitro aging
procedure possibly influenced the mechanical properties of conventional GIC restorations. SEM images
underlined the significance of these results and showed significant changes on the surface of the
conventional GIC samples after thermocycling treatment. This comparative analysis sheds light on the
improved mechanical performance of the green-mediated nanocomposite GIC formulations and indicates
their potential advantages over conventional GIC in terms of compressive strength, flexural strength, and
microhardness under thermocycling conditions.
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