Review began 04/15/2023 Review ended 04/29/2023 Published 05/01/2023

© Copyright 2023

Dabbagh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review

Rufaidah Dabbagh 1 , Amr Jamal $^{1,\,2}$, Jakir Hossain Bhuiyan Masud 3 , Maher A. Titi $^{4,\,2}$, Yasser S. Amer $^{5,\,2}$, Afnan Khayat 6 , Taha S. Alhazmi 1 , Layal Hneiny 7 , Fatmah A. Baothman 8 , Metab Alkubeyyer 9 , Samina A. Khan 10 , Mohamad-Hani Temsah 11

 Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
 Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
 Health Informatics, Public Health Informatics Foundation, Dhaka, BGD
 Quality Management Department, King Saud University Medical City, Riyadh, SAU
 Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, SAU
 Health Information Management Department, Prince Sultan Military College of Health Sciences, Al Dhahran, SAU
 Medicine, Wegner Health Sciences
 Library, University of South Dakota, Vermillion, USA
 Department of Information Systems, King Abdulaziz University, Ieddah, SAU
 Department of Radiology, King Saud University, Riyadh, SAU
 School of Computer Sciences, Universiti Sains Malaysia, Penang, MYS
 Pediatric Intensive Care Unit, Department of Pediatrics, King Saud University, Riyadh, SAU

Corresponding author: Amr Jamal, amrjamal@ksu.edu.sa

Abstract

During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML.

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109.

The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias.

ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.

Categories: Radiology, Infectious Disease, Healthcare Technology

Keywords: healthcare technology, deep learning artificial intelligence, covid-19 chest imaging, decision support systems, covid-19 diagnosis, prediction, artificial intelligence, machine learning in early pandemic, sars-cov-2, covid-19

Introduction And Background

Machine learning (ML), one of the broad disciplines of artificial intelligence (AI), refers to the ability of a machine to understand and learn hidden knowledge by finding patterns in large datasets using analytical techniques [1]. ML requires modeling design, learning functions, and developing algorithms. The main idea is to enable automated classification or clustering techniques to increasingly learn the behavior from data to generate new patterns and predict future actions using decision support systems [1]. Generally, ML can be broadly divided into three types: supervised learning, unsupervised learning, and reinforced learning [2]. The "supervised" method is the type often used in disease prediction. Supervised ML includes several classes such as regression, support vector machine, decision tree, random forest, naive Bayes, K-nearest neighborhood, and artificial neural network [3]. A more complex form of the neural network is deep learning (DL), which employs multiple layers of neural networks [4]. DL can be supervised, unsupervised, or reinforced.

ML has been frequently adopted as an aid for diagnostic screening during the COVID-19 pandemic, where the research suggests its ability to identify infected individuals from radiological imaging before symptoms develop [5]. ML technology also has the ability to process hundreds of thousands of images in a short period while exhibiting higher sensitivity and specificity for picking up radiological changes compared to the naked human eye [5]. At the beginning of the COVID-19 pandemic in 2020, there was an urgency to expand on

How to cite this article

Dabbagh R, Jamal A, Bhuiyan Masud J, et al. (May 01, 2023) Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review. Cureus 15(5): e38373. DOI 10.7759/cureus.38373

what has been published concerning the operational maturity of ML as an aid for diagnosis and prognosis in the healthcare setting [6]. Some researchers express skepticism about the readiness of ML for deployment in COVID-19 prevention and control, given the limited scope and relatively poor quality of evidence in this area [7]. More importantly, while many ML models show good performance, they are at a very high risk of bias due to the limitation and non-representativeness of data samples, the selectivity of databases used for their development, and the lack of data access for model validation [8]. Thus, the literature shows a need for improvement to facilitate the safe and effective clinical adoption of ML applications during such a pandemic crisis [7]. Although many efforts have been made to use ML technology as a support system for COVID-19 in the clinical setting, the predictors and type of models used are very variable in nature, making it difficult for clinicians to evaluate the strengths and limitations of each. Several reviews have been published around the utility of ML technology to aid in the prediction of diagnosis and prognosis of COVID-19. However, these have their shortcomings. For starters, most of these reviews only studied the literature pertaining to using ML in diagnostic imaging [9-15].

On the other hand, others were too broad and included any use of AI in combating COVID-19 [16-18]. Few provided detailed summaries for the ML model types [19]. Some did not follow a methodologically sound systematic review approach [20,21], while others did not address bias assessment [21,22]. None provided variation in training and testing methods or the limitations of the datasets on which the models were developed and their applicability to the population in question. Moreover, due to the high demand for COVID-19 research, the previous reviews included many studies that have not yet been peer-reviewed [8,13,15].

Furthermore, many available reviews require technical expertise in ML, leaving technically inexperienced healthcare professionals in the dark. These challenges, among others, show that adopting ML models for the clinical setting should be approached with caution. Critical appraisal of such research needs to be critically appraised using a methodologically sound approach to help inform healthcare professionals. From that end, the aim of the current systematic review was two-fold. First, we summarized the literature published in the initial phase of the COVID-19 pandemic (January 1, 2020, to June 31, 2020) with respect to studies examining AI models for the prediction of diagnostic accuracy measures reported in these studies. With this review, we hope to bridge the gap between the ML technical savy and lay medical readers.

Review

Methods and materials

Search Strategy

We searched MEDLINE (OVID), Scopus, Embase, and IEEE Xplore, from the beginning of January to the end of June 2020, for all published studies that used ML models to predict the diagnosis or prognosis of COVID-19 using search string (Table 1).

Search Keywords String

(((("pneumonia") OR ("virus") AND ("epidemiology") OR ("outbreak" OR "wuhan")) OR ("betacoronavirus") OR ("beta-coronavirus" OR "covid" OR ("coronavirus") AND "Machine Learning" OR "knowledge W/2 (acquisition* OR representation)) OR ((automated OR computat* OR artificial OR ambient) W/2 (intelligence OR reasoning)) OR (comp uter W/1 (reasoning OR (vision-system))) OR ((data OR computational) OR ((transfer OR m achine OR deep OR hierarchical OR supervised OR (semi-supervised) OR active OR inductive OR unsupervised) W/1 learning) OR (machine)OR network*)) OR (clinical W/0 decision W/0 support*) OR((augmented OR virtual) W/0 reality))))

TABLE 1: Set of search strings adapted to each of the databases searched

LH conducted a database search, and results were exported to Endnote [23] to facilitate the collaboration of reviewers during the study selection process. The search strategy followed two stages and was conducted by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) of Observational Studies in Epidemiology reporting guidelines [24]. In the first stage, four investigators (RD, AJ, IH, and HT) independently screened the titles and abstracts of all the articles retrieved from the searched databases. If sufficient information was available in the abstract of an article to decide whether to retain or exclude it, the decision was made to exclude such articles from the full-text screening stage. Otherwise, the articles with titles relevant to the topic of interest, in which abstracts did not provide sufficient information for exclusion, were included in the full-text screening stage. During the second stage, the same four investigators screened the full text of all articles retained from the first stage for inclusion and exclusion criteria. When in doubt, disagreements were resolved with consensus.

Inclusion and Exclusion Criteria

We included observational studies, clinical trials, research letters, case series, and case reports addressing ML models in COVID-19 prediction without language restrictions. However, inclusion was restricted to articles that met the following criteria: (1) The article was published in a peer-reviewed journal; (2) the population was any patients with suspected SARS-COV-2 infection or with a confirmed diagnosis when the prognosis was predicted; (3) the use of ML models was for assisting diagnosis or prognosis of suspected or diagnosed COVID-19 patients; and (4) the outcome of interest was COVID-19 diagnosis. We excluded time series, surveillance studies forecasting the COVID-19 pandemic, systematic or narrative reviews, opinions, short communications, commentaries, statement articles, news reports, preprints, and articles where we failed to access full text despite contacting the authors. However, preprints hat were published at the time of writing this article were included. We also excluded any study that only used ML models to predict the diagnosis of prognosis of diseases other than COVID-19 or studies that predicted the diagnosis or prognosis of COVID-19 without ML. Two authors (RD and MA) resolved the discrepancies through discussion and

adjudication.

As the influx of publications was very high during the early period of the pandemic and journal review processes were hastened, many articles published early in the pandemic may not have been reviewed stringently and were retracted later. For this reason, we made a final check on our retrieved articles and excluded any rejected ones when submitting this article.

Data Extraction

Data for each of the included articles were extracted by any of the two authors independently (RD, JH, MT, AJ, HT, MA, AK, SAK, and TA). A calibration exercise was conducted to ensure reviewers' consistency before the data extraction. The consensus of three authors (RD, JH, and MA) resolved any discrepancies in data extraction. The extracted measures included the first author's name, author's country, study field (radiology vs. other), study setting (hospital vs. computer lab), type of data source (primary vs. secondary), source database, sample size (total, training, and testing), the reported purpose of study, diagnostic outcomes of interest, predictive effects of interest, type of ML model used, and tests for diagnostic accuracy registered.

Bias Assessment

As most of the retrieved studies tested the performance of ML models for diagnostic or prognostic accuracy, we assessed the risk of bias using the Prediction model Risk Of Bias ASsessment Tool (PROBAST) [25]. The same authors who extracted the data also evaluated the risk of bias for their same assigned studies. Two authors (RD and MT) reviewed their assessments and checked the overall study ratings.

Data Synthesis

In this study, we provided a descriptive summary of the extracted data points and an overall rating for bias risk. Due to the high heterogeneity of ML models between studies and variation in sample populations and tests of diagnostic accuracy, it was not suitable to synthesize pooled accuracy estimates. This systematic review was registered on the International Prospective Register for Systematic Reviews (PROSPERO), with the number CRD42020197109 [26].

Results

We retrieved 3,534 studies from the electronically searched databases, of which 110 were finally included for full-text screening (Figure 1).

FIGURE 1: PRISMA chart for retrieval of included articles

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Forty-one records were excluded from the data extraction stage because they met the exclusion criteria. Of these, three were still preprints at the time of writing this article. Additionally, a duplicate study published the same results in another journal. The final records from which data were extracted were 66 [27-94].

Characteristics of the Included Studies

Most retrieved publications were from Chinese authors (30%) (Figure 2).

FIGURE 2: Number of publications by country based on authors' countries

Overall, 42 (64%) studies used publicly available secondary data (Appendix 1). The most commonly used source for COVID-19 radiographic images was the Joseph Cohen dataset [95], while the most frequent source for non-COVID-19 radiographic images was Kaggle.com [96]. Although these databases were frequently used in the included studies, there was insufficient information to evaluate the similarity of samples retrieved from these publicly available data. As a result of having these available secondary data sources for COVID-19 cases and non-COVID-19 individuals, the most common study design was an un-nested case-control design (71%). Of the studies that used primary hospital data (29), the data were predominantly from Chinese hospitals (19), most of which were from Wuhan province. Few studies had smaller sample sizes of fewer than 100 patients [27,44,46,48,51,91]. In one study, the sample was not mentioned altogether [66]. An important observation was that 52 studies (79%) were in the field of radiology in which the ML models were developed using chest radiographs for predicting COVID-19 diagnosis and distinguishing it from other lung diseases or predicting disease severity among hospitalized COVID-19 individuals. It appeared that 30 studies used chest X-ray images, 20 used chest CT images, one used chest X-ray and CT images, and one used chest ultrasound (US) frames. Thirteen of the included studies used ML models to predict COVID-19 disease severity [39,40,46,51,56,59,63,77,86,87,89,92]. Severity outcome measures included the need for ICU transfer, hospital stay time, mechanical ventilation, and death (Appendix 1).

Types of Machine Learning Techniques Used

Different ML methods were used in the studies. These included convolutional neural networks (CNNs), decision trees (DT), random forest (RF), gradient boosting machines (GBM), support vector machines (SVM), artificial neural networks (ANN), k-nearest neighbors (KNN), logistic regression, and naive Bayes (Appendix 1). Most studies used (DL) models (74%), specifically in the form of CNN. However, ML is not limited to this technique. Some studies used a combination of types of ML models to enhance the CNN model. In contrast, others compared the performance of different ML models to identify the one with superior diagnostic accuracy. Modifying pre-trained models was also popular among the retrieved studies. For the most part, model architecture was clearly described, and the breakdown of datasets to testing, training, and validation was also mentioned. This later information was missing from 15 studies.

Diagnostic Accuracy Measures

The reported measures of model accuracy varied across the retrieved studies (Appendix 1). These measures included accuracy, sensitivity, specificity, precision, recall, F1 score, positive predictive value (PPV), negative predictive value (NPV), the area under the curve (AUC), Kappa statistic, % correctness, and % completeness. The most frequently reported measure was accuracy. The majority of studies reported performance measures exceeding 90%. This was commonly reported in studies that utilized ML to diagnose COVID-19 through chest imaging. In all instances, ML accuracy was superior to the resident or consultant's naked-eve diagnosis.

Risk of Bias Assessment

The overall risk of bias was "unclear" for 56% of the studies, while the applicability concerns were "low" for 88% of the studies (Figure 3).

FIGURE 3: Critical appraisal of the selected studies based on the PROBAST

PROBAST: Prediction model Risk Of Bias ASsessment Tool.

Unfortunately, most of the studies fell short in the domains of participant selection. This was because the majority of studies, and more specifically those using secondary open-source data, selected their databases arbitrarily, and inclusion and exclusion criteria for the selected sample were never mentioned. Additionally, it was unclear why the databases were fixed or whether or not the subsamples (COVID-19 vs. no COVID-19) were randomly selected, which may have introduced selection bias to the studies. When data from different countries were used, it was unclear how comparable these data were. The predictor data were mostly chest images, and participants' characteristics were rarely considered during analysis. As most studies involved chest imaging, the timing of chest image acquisition was seldom recorded. The quality of chest image datasets was also questionable. For example, the images from the two most commonly used data sources (loseph Cohen and Kaggle.com) are stored in JPEG format, which is of low 8-bit depth (256 gray shades), making them vulnerable to losing important pixel information. This imaging quality does not reflect the clinical or radiology practice where digital imaging and communications in medicine (DICOM) images of at least 12 bits (4096 gray shade) are used.

Most of the data used in these studies were from China, so it is not easy to assume similar accuracy if the ML models are tested on outside populations. On the other hand, other studies created large datasets, including data collected from different hospitals worldwide. Moreover, most studies did not specify the covariates controlled for in the ML models. This may have introduced confounding by unmeasured personal characteristics. The points above may have introduced bias to the evaluated studies' internal and external validity.

Discussion

Incorporating ML into health care is becoming more common. Advancements in ML have accelerated exceptionally during the COVID-19 pandemic, in which the technology has been adopted and improved for COVID-19 screening, diagnosis, and treatment, in addition to vaccine development [97,98]. The current systematic review focused on summarizing the published literature on utilizing ML in the diagnosis or prognosis of COVID-19 during the early phase of the pandemic. The findings from this study can be summarized in the following points. First, the studies suggest that ML can indeed help in identifying COVID-19 with high levels of accuracy, especially in the context of radiological diagnosis. Second, DL is the most preferred ML method for this purpose. Third, secondary data analysis was common among these studies as many researchers shared these data through open platforms. However, despite this data compilation, most of the data were collected from Chinese populations. There was little effort to merge large datasets to conduct ML testing on large samples representing various populations worldwide. The popularity of the application of ML on chest X-rays and CT scans in the retrieved studies agrees with what has been previously published [14,15,97,98]. This may be due to the feasibility of obtaining chest images in most healthcare settings. It may also be linked to the availability of open-source chest image far for training and the numerous existing pre-trained models that can be applied to chest images [14,15,97,98].

The literature examining the utility of ML in chest imaging suggests that this technology is exceptionally efficient in augmenting physicians' diagnoses, which can help reduce medical errors and improve patient safety [97,98]. Although abundant literature explores using ML to identify pulmonary lesions on chest imaging, there is still room for innovation in this domain. Future research could combine all available data from different countries into one mega-dataset and validate and test existing models for diagnostic accuracy. Another venue worth exploring would be pushing the accuracy of ML in identifying COVID-19 lesions using US chest imaging. This method is less invasive than conventional radiological approaches and has not been thoroughly examined in the currently reviewed literature [99]. DL is the most common ML method utilized as a decision support system for medical purposes [19,97,98]. DL has been described as having a shorter testing time when compared to other types of ML models. Additionally, many pre-trained DL models, particularly CNN models, have been shared during the pandemic as open-source algorithms that

may have made it easier for other researchers to use as backbones to build on [98].

Given that most of the literature examined DL models using chest images as the main predictor, we recommend that future research expand on existing models and experiments with DL using presenting symptoms and laboratory markers as predictors. The retrieved studies suggest that the latter two indicators were used primarily in regression rather than DL modeling. The availability of COVID-19 data repositories may have driven the frequency of using secondary data for ML modeling. The urgency of expediting and facilitating COVID-19-related research during the early stages of the pandemic made scientific journals encourage authors to share their data through publicly accessible COVID-19 data repositories. Most of these include Chinese data, followed by data from the United States, the United Kingdom, and the European Union [100]. This may explain the abundance of Chinese data in the studies retrieved for our systematic review.

However, many publicly available chest X-ray data are stored in non-standard format with limited gray shade levels. This factor may limit the generalization of the used model. Chinese scientists also had the highest rate of COVID-19-related research production, especially in the early stages of the pandemic [100]. This may be explained by the natural course of the COVID-19 pandemic, which spread from China to other parts of the world two to three months later. Shuja et al. evaluated the sharing of COVID-19 datasets during the pandemic and identified 23 medical datasets shared for COVID-19 research [101]. Some of the mentioned drawbacks of these data included limited generalizability to other populations, small sample sizes, and challenges in accessing non-open-source data [101].

There are a few significant limitations to our study that should be mentioned. Due to the variability in ML models, datasets used, and accuracy measures, we could not synthesize pooled accuracy estimates. This variability also made it challenging to select the best method for ML modeling for prediction; different ML methods should be used depending on the context and desired prediction functions [98]. Moreover, our systematic review was limited to the search engines mentioned. Therefore, our review could have missed studies indexed outside these databases and in languages other than English. However, despite these limitations, this systematic review provided a detailed summary of the data types, predictive measures, and accuracy measures reported in ML models used to predict the diagnosis and prognosis of COVID-19 in the early pandemic phase. It also provided a detailed critique of the quality of the published literature, something lacking in many of the available reviews posted on this topic. We believe that our results can be used as a data source for future researchers to select existing models and publicly available data to experiment with in order to modify ML methods for enhancing healthcare delivery, especially with the new development in Al-Chatbots, such as ChatGPT, that was used to trigger possible causes of excess mortality in 2022 [102,103]. Further research is warranted on whether evolving Al-Chatbots could facilitate early integration of AI into future infectious disease outbreaks, provided these models become more reliable [104-106].

Conclusions

The COVID-19 pandemic has caused unprecedented disruption to healthcare systems around the world. This has led many countries to adopt modern technological approaches that can be alternatives to high-cost and inaccessible medical investigations and management modalities for combating COVID-19. The research suggests that ML can serve as a helpful aid in localizing and segmenting COVID-19 lesions on chest images. However, due to the uncertainty around the selection of samples in such research and the ambiguity in controlling for essential confounders in the development of such ML models, the results of accuracy in disease prediction should be approached with caution. Nevertheless, this research is rapidly evolving and requires more efforts to validate and test the existing models to establish their efficacy in different population settings. Although this current technology should not replace the gold standard diagnostic method for COVID-19 via RT-PCR, we encourage researchers to continue the scientific battle against this pandemic, focusing their interests on developing large datasets from different countries on which the existing models can be tested. These can be formed into mega-data repositories. Finally, transparency about data sources and sampling techniques is also essential for scientists to improve the quality of ML diagnostic

Appendices

Study	Country	Study design	Study	Study setting	Data type	Data source	Sample size	Dataset breakdown	Reported study aim/purpose	Diagnostic outcome of interest	Prognosis outcome of interest	Predictors of interest	Model development	Type of ML model
Dabbagh et al. [26]	Egypt	Unnested case-control study	Computer	Computer	Secondary dataset	Joseph Cohen dataset (https://github.com/ieee8023/covid- chestoray-dataset)	Eight chest X- ray images	N/A	Using an improved marine predators algorithm for the detection of COVID-19 on chest X-ray images	Diagnosis of COVID-19	N/A	Chest X-ray Images	New model based on existing backbone	ML algorithm; marin predators' algorithm with ranking-based diversity reduction
Elaziz et al. [27]	Egypt	Unnested case-control study	Radiology	Hospital- based	Secondary dataset	 Joseph Cohen dataset; (2) Images from 43 publications (https://github.com/ieee8023/covid- chestbray- dataset/blob/master/metadata.csv); (3) Kaggile.com; (4) Chowdhury et al., 2020 data (from Qatar University, University of Dhakar and Malaysia); and (5) SIRM 	Total 3,451 X- ray images— Dataset-1: 216 COVID-19 and 1,675 without COVID-19; Dataset-2: 219 COVID-19 and 1,341 without COVID-19	NA	To propose a method for COVID-19 chest X-ray image classification	Diagnosis of COVID-19	N/A	Chest X-ray images	Developed new model	ML; DL; CNN A modified Manta-Ray Foraging Optimizatii (MRFO) based on differential evolution (DE) as a feature selection method.
														ML; (1) Deep learnin

Ahamad et al. [29]	China	Unnested case-control study	Internal medicine	Computer Iab	Secondary dataset	BDBC-KG-NLP/COVID-19-tracker	Total 6,512 patients: 1,572 COVID-19 cases and 4,940 suspected cases	70% training; 30% testing	To predict COVID-19- positive patients among suspected and confirmed individuals	Diagnosis of COVID-19	N/A	Fever, cough, runny nose	Used existing pretrained models	(DL); Extreme Gradient Boosting (XGBoost); (2) Decision Tree; (3) Random Forest; (4) Gradient Boosting Machine (GBM); (5) Support Vector Machine (SVM).
Albahi [30]	Saudi Arabia	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com; (3) Symhetic dataset generated by GAN model	Total 119,968 cheat X-ray images: 337 COVID-19, 1,026 pneumonia, 34,293 other lung contikons (atelectasis, effusion, inifihration, mass, nodule, pneumothorax, cardiomegaly), and 84,312 normal	N/A	To distinguish COVID-19 images from other chest diseases; to create a machine learning model with multiclass classification using X-rays	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest X-rays images	Updated existing models	ML; DL; Model 1: DL (CNN) with 4-layeres convolutions for image augmentation Model 2: Transfer learning model using IncpetionV3; Model 3 DL using ResNet without image augmentation; Mode 4: DL with image augmentation and 8 targeted classes
Apostolopaulos et al. (31)	Greece	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) the Radiology Society of North America (RSNA); (3) Radiopaedia; (4) Italian Society of Medical and Interventional Radiology (SIRM); (5) Kermany et al. 2018 dataset; (6) National Institutes of Health X-ray data	Total 2,555 cheat X-ray images: 455 COVID-19, 910 bacterial and viral pneumonia, and 1,190 pulses diseases (pleural efflusion, emphysema, and COPD)	NA	To extract features of lung disease from X-rays, including COVID-19	Diagnosis of COVID-19 and classification vs. pneumonia and other lung diseases	NA	Chest X-ray Images	Used existing pretrained models	ML: DL; CNN (MobileNet)
Apostolopoulos and Mpesiana [32]	Greece	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) RSNA; (3) Radiopaedia; (4) SIRM; (5) Kermany et al. 2018 dataset	Total 2869 cheat X-ray images— Dataset-1: 224 COVID-19, 700 bacterial pneumonia, 504 normat; Dataset-2: 224 COVID-10, 417 bacterial pneumonia, and 504 normal	N/A	To automatically diagnose COVID-19 from cheat X- rays	Diagnosis of COVID-19 and classification vs. other pneumonia	NA	Chest X-ray images	New model based on existing backbones	ML: DL; CNN (1) VGG19; (2) MobileNet-42; (3) Inception; (4) Xception; (5) Inception-ResNet-42
Ardakani et el. [33]	Iran	Retrospective	Radiology	Hospital- based	Primary dataset	Iran University Hospital	Total 194 patients: 108 COVID-19 cases, 86 preumonia (Total 1020 chest CT images)	89% training (816; 50%-50% distribution), 11% validation (102; 50%-50% distribution)	To classify COVID-19 pneumonia vs. other viral or atypical pneumonia	Diagnosis COVID-19 and other pneumonia classification	NA	Chest CT images	Used existing pretrained models	ML; DL; pre-trained convolutional neural network (CNN); (1) AlexNet; (2) VGG-16 (3) VGG-19; (4) SqueezeNet; (5) GoogleNet; (6) MobileNet-V2; (7) ResNet-18; (8) ResNet-60; (9) ResNet-01; (10) Xception
Avila et al. [34]	Brazil	Retrospective	Internal	Hospital- based	Primary dataset	Hospital Israelita Albert Einstein (HIAE, Sao Paulo, Brazil)	Total 510 patients: 73 COVID-19 cases, 438	N/A	To predict COVID-19 diagnosis using	Diagnosis of COVID-19	N/A	Hematocrit, hemoglobin, platelets, eosinophils, neutrophils, basophils, lymphocytes,	New model based on existing	ML; Bayes (Naive Bayes)

Bai et al. [35]	China	Unnested case-control atudy	Radiology	Hospital- based	Primary dataset	(1) Nine hospitals in Hunan Province, China; (2) Xiangya Hospital; (3) Rhode Island Hospital; (4) Hospital of the University of Pennsylvania	viithout COVID-19 Total 1186 chest CT Images: 521 COVID-19, 665 other pneumonia	70% training (830), 20% validation (237), and 10% testing (119)	hemogram data To discriminate COVID-19 from other phoeumonia on cheat CT images	Diagnosis of COVID-19 and other pneumonia dassification	NA	I eukocytes, monocytes, red blood cell count (RBC), MCV, MCH, MCHC, MPV, RDW Age, sex, temperature, white blood cell count (WBC), lymphocyte count, pre-existie countitions, duration of symptoms, source of transmission, COVID-19 sevently, chest CT image	Used pretrained model	ML: DL; CNN EfficientNet B4 (a CNN pretrained on ImageNet)
Banerjee et al. [36]	Brazil	Unnested case-control study	Internal medicine	Computer lab	Secondary dataset	Hospital Israelita Albert Einstein mindstream-Al challenge data	Total 598 patients: 81 COVID-19 cases, 517 COVID-19 negative, 188 other pneumonia	N/A	To predict COVID-19 diagnosis solely based on blood laboratory panel	Diagnosis of COVID-19	NA	Age, hematocrit, hemoglobin, mean platelet volume (MPV), RBC, lymphocytes, leukocytes, leu	Used existing pretrained models	ML; (1) Random Forest; (2) Lassoelastic net regulized generalizet (gmint) linear models (3) DL; Artificial neur network (ANN)
Brinati et al. [37]	Italy	Retrospective	Internal medicine	Hospital- based	Secondary dataset	The Scientific Institute for Research, Hospitalization and Healthcare (IRCCS)	Total 279 patients: 177 COVID-19 cases, 102 non-COVID patients	80% training, 20% teating/validation	To predict COVID-19 diagnosis using routine blood tests	Diagnosis of COVID-19	NA	Age, gender, leukocytes, platelets, C- reactive protein, aspartate transaminase (AST), alanine aminotransferase (ALT), gamma- glutamyl transferase (GGT), lactate dehydrogenase (LDH), neutrophils, lymphocytes, monocytes, eosinophils,	Used existing pretrained models	ML; (1) Decision tree (extremely randomized trees); (1 Instance-based, k- nearest neighbors (K9NN); (3) logistic regression; (4) Naive Bayes; (5) Random forest; (6) SVM
Brunese et al. [38]	China, Italy, Australia, and the USA	Unnested case-control study	Radiology	Hospital- based	Secondary dataset	(1) Joseph Cohen dataset; (2) Ozturk et al., 2020; (3) Wang et al. chest X- ray 8 dataset	Total 2773 chest X-ray images: 250 COVID-19, 2753 other putmonary diseases	37% training (100 COVID, 1000 other pulmonary diseases), 37% testing (100 COVID, 1000 other pulmonary diseases), and 26% validation (50 COVID, 753 other pulmonary diseases)	To discriminate between generic pulmonary diseases and COVID-19 and to highlight the areas in the symptomatic of the COVID- 19 disease	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest X-ray images	New model based on existing backbone	ML; DL; CNN Based on VGG-16 (i.e., Visual Geometry Group)
							Total 9749 chest CT	Training datasets were not mutually	To automatically					mL; DL; CNN Deep image-to-image network (for lung

Chaganti et al. [39]	USA	Unnested case-control study	Radiology	Hospital- based	Primary dataset and secondary dataset	 Muttiple centers in USA, Canada, and Europe; (2) The National Lung Screening Trial; (3) the COPDGene study 	images: 431 COVID-19, 174 pneumonia, 274 other interstitial lung disease	exclusive: testing (200), abnormality segmentation training (901), lung segmentation training (9223)	quantify chest CT abnormalities most often seen in COVID-19	N/A	Severity	Severity extent (lung severity score, opacity percentage)	Used existing pretrained models	segmentation); DenseUNet (for abnormality segmentation); multiple linear regression (for prediction)
Cheng et al. [40]	USA	Retrospective cohort	Internal medicine	Hospital- based	Primary dataset	Mount Sinai Health System	Total 1,987 COVID-19 patients	70% training, 30% testing (equally balanced ICU and non-ICU patients)	To predict the risk of transfer of COVID-19 to the ICU within 24 hours	NA	Transfer to ICU within 24 h of prediction	Periodic monitoring of vital signs RBC; serum biochemical tests; coagulation profile; ECG results	Used pretrained model	ML; ensemble; random forest mode derived class probabilities
Civit-Masot et al. [41]	Spain	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	https://public.roboflow.al/classification/ covid-19-and-pneumonie-scans	Total 396 chest X-ray images: 132 COVID-19, 132 other pneumonia, 132 normal	80% training; 316 (105 COVID; 105 normal; 106 pneumonia); 20% testing/validation; 80 (27 COVID; 27 normal; 26 pneumonia)	Identification of pneumonia and COVID-19 from chest X- ray images	Diagnosis of COVID-19 and other pneumonia classification	N/A	Chest X-ray images	New model based on existing backbone	ML; DL; CNN based on VGG-16 model using TensorFlow wi Keras
Das et al. [43]	India	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com; (3) NIH TB CXR data	Chial 6,845 cheat X-rays: 162 COVID- 19, 4280 bacterial and viral pneumonia, 342 TB from 342 TB from China, 58 TB from USA, 340 healthy from USA, 1563 healthy from USA, 1563	All data were divided into 10 subsamples. Training was applied on 9 of the subsamples (10% each). Testing was applied on the 10th subsample (10%).	To detect COVID-19 infection in cheat X-rays COVID-19 compared to other pneumonia or normal cheat X-rays	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML: DL: proposed CNN model compare to pretrained models inception Net V3, ResNet50 and SVM, COVID-Net, Truncated inception net (study model)
El Asnaoui and Chawki [44]	Morocco	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kermany et al. 2018	Total 6,087 chest images (X-rays and CTs): 231 COVID-19, 1,493 viral pneumonia, 2,780 bacterial pneumonia, 1,583 normal	80% training, 20% validation	To assess the accuracy of deep learning in the early detection of COVID-19	Diagnosis of COVID-19	N/A	Chest X-rays and CT images	Used existing pretrained models	ML: DL; CNN multipl transfer learning models: inception_Resnet_V DensNet201; Resnest50; Inception_V3; Mobilenet_V2 VGG16; VGG19
Fang et al. [45]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	Beijing Youan Hospital	Total 75 chest CT images: 49 COVID, 29 other pneumonia	67% training, 33% testing	Distinguishing COVID-19 pneumonia from other pneumonia	Diagnosis of COVID-19	N/A	Chest CT images	Developed new model	ML; SVM
Fayyoumi et at. [46]	Jordan	Cross- sectional	Internal medicine	General population	Primary dataset	Online survey	Total 105 participants: 41 COVID-19, 64 non-COVID	NA	To establish a reliable trusted model to predict the potential patients of COVID-19 by using either statistical or machine learning models	Diagnosis of COVID-19	N/A	Age, smoker (yes vs. no), positive chest X-ray, fever, sore throat, aches and pain, dry cough, nasal congestion, absence of smell, diarrhea or vomiting, breathing difficulty	Developed new model	ML; (1) Logistic regression; (2) SVM (3) DL; CNN (multi- layer perception)

Fu et al. [47]	China	Retrospective	Radiology	Hospital- based	Primary dataset	Hospital data source, N/A	Total 64 patients: 21 stable COVID- 19 cases, 43 progressive COVID-19 cases, 6 COVID-19 negative	63 patients for training and 1 patient for testing	To quantify COVID-19 disease severity and predict disease progression trends	N/A	Stable vs. progressive patients (progression was not clearly defined)	Chest CT images	Developed new model	ML; K(K-1)/2 binary SVM
Hasan et al. [48]	Iraq	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Radiopaedia; (2) the cancer imaging archive (TCIA) websites	Total 321 chest CT images: 118 COVID-19, 96 other pneumonia, 107 normal	70% training, 30% validation/testing	To reduce the erroneous diagnostic of CT lung scans and assist clinicians to quickly discriminate patients who have COVD- 19 from healthy cores	Diagnosis COVID-19 vs. other pneumonia	NA	Chest CT images	Developed new model	ML; DL; For extraction: CNN in combination with Q- deformed entropy descritted entropy feature extraction (QDE). For classification: Long short-term memory, CNN classifier
Hurt et al. [49]	USA	Case-series	Radiology	Computer lab	Secondary dataset	Five US and Chinese epidemiologic and case-study publications	Total of 10 chest X-rays from 5 patients	N/A	Assessing the generalizability of a DL algorithm on frontal chest X-ray images to diagnose pneumonia	Diagnosis of COVID-19 vs. other pneumonia	N/A	Chest X-ray images	Used existing pretrained model	ML; DL; CNN (U-Net
Jaiswal et al. [50]	Brazil	Unnested case-control study	Radiology	Computer lab	Secondary dataset	Kagde.com	Total 2492 CT chest images: 1262 COVID- 19, 1230 normal	68% training, 17% validation, 15% testing	To classify COVID-19 pneumonia vs. non-COVID-19 on chest CT images	Diagnosis of COVID-19	N/A	Chest CT images	New model based on existing backbone	ML; DL; CNN based on DenseNet201 architecture (the proposed model was compared to VGG16 ResNet5272 and Inception-ResNetV2)
Jehi et al. [51]	USA	Retrospective cohort	Internal medicine	Hospital- based	Secondary dataset	Cleveland Clinic COVID-19 registry	Total 11672 patients: 1108 COVID-19, 12,859 non- COVID	83.6% training, 11,672 (818 COVID-19; 10,854 non- COVID); 16.4% validation/testing, 2,295 (290 COVID-19; 2005 non-COVID)	To predict the individualized risk for testing positive for COVID-19	Diagnosis of COVID-19	N/A	Demographic characteristics, comorbiditles, immunization history, symptoms, travel history, laboratory variables, medications	New model based on existing backbone	ML; Logistic regression
Jiang et al. [52]	China	Case-series	Internal	Hospital- based	Primary dataset	(1) Wenzhou Central Hospital; (2) Cangnan People's Hospital	Total 53 COVID-19 patients	N/A	(1) To identify the combinations of clinical characteristics of COVID-19 that predict outcomes; (2) to predict patients at risk for more severe illness on initial presentation	NA	Acute respiratory distress syndrome (ARDS)	Alanine aminotransferase, myalgias, hemoglobin, gender, temperature, sodium, potassium, lymphocyte count, creatinine, age, WBC	Used existing pretrained models	ML; (1) Logistic regression; (2) KNN; (3) Declaion tree (based on gain ratio) (4) Declaion tree (based on Gini index (5) Random forests; (6) SVM
Kang et al. [53]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	(1) Tongji Hospital of Huazhong University of Science and Technology; (2) China-Japan Union Hospital of Jilin University; (3) Ruijin Hospital of Shanghai Jiao Tong University	Total 2,522 chest CT images: 1,495 COVID-19, 1,027 community- acquired pneumonia	70% training, 30% testing	Diagnosis of COVID-19 pneumonia vs. community- acquired pneumonia on CT chest images	Diagnosis of COVID-19	N/A	Chest CT images	Updated existing models	ML; DL; Latent- representation-basec CNN developed from CPM-Nets architecture (model was compared to logistic regression, SVM, Gaussian- Naive-Bayes, and KNN)

Kha	ın et al. [54]	India	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com; (3) Ozturk et al. 2020	Total 2128 chest X-ray images: 441 COVID-19, 1157 other pneumonia, 810 normal	46% training (284 COVID-19, 657 other pneumonia, 310 normal); 54% testing (157 COVID-19, 500 other pneumonia, 500 normal)	To classify COVID-19 pneumonia vs. other types of pneumonia	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML; DL; CoroNet (a CNN model based or Xception architecture
Khu al. [ızani et 55]	USA	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kermany et al. 2018 dataset	Total 140 chest X-ray images for COVID-19 patients	80% training, 20% testing	To develop a COVID-19 chest X-ray classifier to be implemented as an adjunct to other tests to facilitate differential diagnosis of chest X-ray images of COVID-19	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest X-ray images	Developed new model	ML: DL; multileyer CNN model
Ko	et al. [56]	Republic of Korea and Italy	Unnested case-control study	Radiology	Hospital- based	Primary dataset and secondary dataset	(1) Wonkwang University Hospital; (2) Chonnam National University Hospital; (3) SIRM	Total 4257 chest CT images: 1458 COVID-19, 1357 other pneumonia, 988 normal, 444 lung cancer	75% training (955 COVID-19, 1086 other pneumonia, 698 normal, 355 lung cancer); 25% testing (503 COVID-19, 271 other pneumonia, 200 normal, 89 lung cancer)	To diagnose COVID-19 pneumonia in chest CT images and differentate it from non- COVID-19 pneumonia and non- pneumonia diseases	Diagnosis of COVID-19	NA	Chest CT images	New model based on existing backbone	ML: DL; CNN fast- track COVID-10 classification network (FCONet); four proposed transfer learning models were developed based on the architecture of each of VGG16, ResNet-50, Inceptior v3, and Xception
Lie	t al. [57]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	Six unspecified medical centers in China	Total 4,356 chest CT images: 1,296 COVID-19, 1,735 community- acquired pneumonia, 1,325 normal	90% training, 10% testing	To detect COVID-19 pneumonia on chest CT	Diagnosis of COVID-19	N/A	Chest CT images	New model based on existing backbone	ML; DL; CNN COVNet (a CNN model based on pretrained RestNet50 model as a backbone
Lie	t al. [58]	USA	Unnested case-control atudy	Radiology	Hospital- based	Primary dataset and secondary dataset	(1) Massachusetts General Hospital (internal data); (2) Stanford Hospital (external data for training and validation)	Total 581 chest X-rays: 314 for training and validation (internal dataset); 154 for testing (external dataset); 113 for testing (external dataset)	54% training/validation, 46% testing	To develop a pulmonary X- ray seventy score that predicts the seventy of pulmonary disease	NA	Intubation death	Pulmonary X-ray, severity score	New model based on existing backbone	ML: DL; CNN Convolutional Siamese Neural Network (a CNN model based on DensNet121 underlying subnetwork with initia pretraining on ImageNet)
								Total 3,089 COVID-19 cases: 1,590 from 31 China provinces (1,459 not critical; 131 critical; 1,034 from Wuhan (940 not					Age, dyspnea, COPD, cancer history, number of comorbidities,		

Liang et al. [5	0) China	Retrospective cohort	Internal medicine	Hospital- based	Primary dataset	National Health Commission (NHC) of the People's Republic of China	critical, 94 critical); 389 from Hubei province excluding Wuhan (380 not critical; 76 from Guangdong province (73 not critical; 3 critical)	80% training, 20% validation	To predict clinical outcomes of COVID-19	NA	Critical illness (definition was not clear)	X-ray abnormality, neutrophil- lymphocyte ratio, LDH, direct bilirubin, creatine kinase	Developed new model	ML; DL; deep learning survival cox model
Liu et al. [60]	China	Retrospective cohort	Radiology and internal medicine	Hospital- based	Primary dataset	The Shanghai Public Health Center	Total 134 COVID-19 cases	NA	To compare the capability of quantitative CT imaging to biological markers in the prediction of the progression of COVID-19	NA	Any severa on one major criterion (e.g., respiratory failure requiratory and the several ventilation abock needing vasopresson, or extracorporeal membrane asygenation), two or more mimor criteria (e.g., a respiratory rate greater than 30 breathalmin, or O2 staturation staturation staturation staturation criteria of additional organ damage	Age, gender, APACHE-II, neutrophil- Jymphocyte ratio, D-dimer, CT features, NLR combined with CT features	Developed new model	ML; regression (1) logistic regression (LR); (2) Cox proportional hazard model
Liu et al. [61]	China	Retrospective cohort	Internal medicine	Hospital- based	Primary dataset	The First Affiliated Hospital of Zhejiang University	Total of 2243 patients viating the fever clinic: 17 confirmed COVID-19, 2226 COVID- 19 negative	N/A	To develop a dynamic risk assessment decision support cOVID-19 (DDC19) to assist GPS in data collection, dynamic risk assessment, triage management, and follow-up	Classification of patients into low-risk, moderata- risk, and high-risk for COVID-19	N/A	Demographic data, exposure history, symptoms, laboratory data, chest CT images	Developed new model	ML: (1) NLP (for data extraction from patie history): (2) multiclas logistic regression
Loey et al. [62] Egypt	Unnested case-control study	Radiology	Hospital- based	Secondary dataset	Joseph Cohen dataset	Total 306 chest X-ray images: 69 COVID-19, 79 bacterial pneumonia, 79 viral pneumonia, 79 normal	88% training (60 COVID; 70 normal; 70 bacterial pneumonia; 70 viral pneumonia); 12% testing (9 COVID; 9 normal; 9 bacterial pneumonia; 9 viral pneumonia;	To classify COVID-19 pneumonia compared to normal lung, other viral pneumonia, or bacterial pneumonia	Diagnosis of COVID-19 vs. other pneumonia	N/A	Chest X-ray images	Used existing pretrained models	ML; DL; three deep learning transfer CNI models (Alexnet; Googlenet; Resnet18 augmented with generative advensari network (GAN)
Mahmud et al. [64]	Bangladesh	Unnested case-control study	Radiology	Computer lab	Secondary	(1) Guangchou Medical Center, China; (2) Sylhet Medical College, Bangladesh	Total 5,856 chest X-ray images: 305 COVID-19; 1,493 other viral pneumonia;	N/A	Detecting COVID-19 from chest X- ray images	Diagnosis of COVID-19	N/A	Chest X-ray images	Developed new model	ML; DL; A CNN named as CovXNet,

							2,780 bacterial pneumonia; 1,583 normal							
Matos et al. [65]	Itały	Retrospective cohort	Radiology and internal medicine	Hospital- based	Primary dataset	Hospital not specified	Total 106 COVID-19 Cases	75% training, 25% testing	Analyzing the performance of combining quantitative CT with clinical and laboratory data to predict COVID-19 adverse clinical outcomes	NA	Adverse outcome (defined as the need for mechanical ventilation or death)	Age, gender, duration of symploms, WBC, lymphocyte percentage, C- reactive protein, volume of disease (extracted using autoselect function and expressed in cubic cm), predominant cubic cm), chronic lung disease (emphysema or fibrosis), coronary calcification, aedric calcification, presence of chronic cubic cm), cubic cm), presence of chronic cubic cm), cubic cm), presence of chronic cubic cm), cubic cm), presence of chronic cubic cm), cubic cm), presence of chronic cubic cm), cubic cm), cubi	Developed new models	(1) ML: logistic regression (penalizer binomial regression); (2) GLM 2-conditions Inference trees; (3) support vector machine with linear kernel
Mei et al. [86]	USA	Retrospective	Radiology and internal medicine	Hospital	Primary dataset	Eighteen medical centers in 13 provinces in China	Total 905 patients: 419 COVID-19 cases, 488 COVID-19 negative	60% training (242 COVID-19 cases, 292 COVID-19 negative), 10% tuning (43 COVID-19 cases, 49 COVID-19 cases, 49 COVID-19 cases, 145 COVID-19 negative)	Detection of COVID-19 infection at an early stage using initial CT scan and clinical information	Diagnosis of COVID-19	NA	Chest CT images	Developed new models	ML, DL; multileyer perceptron classifier (MLP) joining model: This consisted of a CNN model for identifying CT image combined with random forest and support vector machines for integrating it with clinical information for prediction of COVID- 19
Murphy et al. [67]	Netherlands	Unnested case-control study	Radiology	Hospital	Primary dataset and secondary dataset	(1) Kaggie.com (training and validation); (2) Bernhoven Hospital (training); (3) Radboud University Medical Center (training); (4) Jeroin Boech Hospital (testing)	Total 25,146 chest X-ray images: 416 COVID-19 cases, 191 COVID-19 suspected cases, 7,851 normal, 5,012 pneumonia, 9,321 abnormal but inconsistent with pneumonia	92% training (23,138), 6% validation (1,540), 2% testing (468)	Detection of COVID-19 pneumonia on chest X-ray	Diagnosis of COVID-19	NA	Chest X-ray images	Used existing pretrained model	ML; DL; CAD4COVID-X-ray
Das et al. [68]	India	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) Chest X-ray6 data by Wang et al.	N/A	70% training, 10% validation, 20% testing	Develop an automated deep learning- based approach for the detection of infection in chest X-rays	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML; DL; deep transfe learning developed b combining CNN and Xeption model
		Unnested		Hospital-	Primary dataset	(1) Training and validation data were retrieved from commercially available data from Yu et al. 2020; (2) Taihe	Total 19,387 CT chest images: 3,950 COVID-19	99.5% training and validation	Detect COVID- 19 pneumonia	Diagnosis of			Used existing	ML; DL; pre-trained CNN MVP-Net (for abnormality

Ni et al. [69]	China	case-control study	Radiology	based	and secondary dataset	Hospital, Shiyan, Hubei; (3) Wuhan First Hospital, Wuhan, Hubei; (4) Jinling Hospital, Nanjing, Jiangsu	pneumonia, 6,871 other pneumonia, 8,566 normal	(19,291), 0.5% testing (96)	lesions on chest CT	COVID-19	N/A	Chest CT images	pretrained models	detection); 3D U-Net (for lobe segmentation)
Obeid et al. [70]	USA	Retrospective	Internal medicine	Virtual care	Primary dataset	Medical University of South Carolina Health System virtual care	Total 6,813 patients: 498 COVID-19 cases, 6,315 COVID-19 negative	60% training, 16% validation, 24% testing	To improve the COVID-19 screening process at virtual care visits, using deep learning model	Diagnosis of COVID-19	NA	Text sequences from patient record notes	New model based on existing backbones	ML; (1) DL; CNN; (2) regression; logistic regression
Oh et al. [71]	Republic of Korea	Unnested case-control study	Radiology	Computer Lab	Secondary dataset	(1) Japanese Society of Radiological Technology; (2) US National Library of Medicine (Montgomery Country dataset); (3) Corona hack: chest X- ray dataset; (4) Joseph Cohen dataset	Total 502 cheat X-ray images: 180 COVID-19, 20 other viral preumonia, 57 normal	70% training (345), 10% validation (49), 20% testing (99)	To classify chest X-ray images according to disease types (COVID-19 pneumonia, other viral pneumonia, and other bacterial pneumonia)	Diagnosis of COVID-19	NA	Chest X-ray images	Used existing pretrained model	ML; DL: CNN Pretrained ResNet-11 model
Ozturk et al. [72]	Turkey	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) ChestX-ray6 data by Wang et al. 2017	Total 1127 chest X-ray images: 127 COVID-19, 500 other pneumonia, 500 normal	80% training (902), 20% validation (225)	Automated diagnosis of COVID-19 from chest X- ray images	Diagnosis of COVID-19 and classification from other pneumonia classes	N/A	Chest X-ray images	New model based on existing backbone	ML; DL: CNN DarkCOVIIDNet, which is based on the Darknet-19 architecture
Panwar et al. [73]	India	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com (for normal images)	Total 284 chest X-ray images: 142 COVID-19, 142 normal	70% training, 30% testing	Detecting COVID-19 from chest X- ray images	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML; DL, CNN based on nCOVnet
Pathak et al. [74]	India	Unnested case-control study	Radiology	Hospital- based	Secondary dataset	(1) Chowdhury et al. 2020; (2) Dilbag et al. 2020	Total 852 chest X-ray images: 413 COVID-19, 439 normal or pneumonia	60% training and validation (9:1 ratio), 40% testing	To classify COVID-19 compared to normal lung or pneumonia using CT images	Diagnosis of COVID-19	N/A	Chest CT images	Used existing pretrained model	ML; DL: deep transfe learning model (ResNet-50)
Pereira et al. [75]	Brazi	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) Radiopaedia encyclopedia; (3) NIH Chest X-ray14 dataset	Total 1144 chest X-my images: 90 COVID-10, 10 MERS-CoV, 11 SARS-CoV, 10 Varicella, 12 Streptococcus, 11 pneumocystis	70% training, 30% testing	To identify pneumonia caused by COVID-19 from other types and allo healthy lungs using only CXR images	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest X-ray images	Used existing pretrained models	ML; (1) multiclass classification: This used k-Nearest neighbors (NNN); Support Vectors Machine (SVM); Multilayer Perceptrons; Decisio Trees and Random Forests. (2) Hierarchial classification: Clus- HMC, which is basec on predictive cluster trees
Pu et al. [76]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	Not specified	Total 649 chest CT images: 151 COVID-19,	75% training (97 COVID-19; 393 not COVID-19), 13% validation (27 COVID-19; 55 not COVID-19),	To classify COVID-19 from community- acquired	Diagnosis of COVID-19 and other pneumonia	N/A	Chest CT images	Developed new models	ML; DL: 3D CNN models

							498 not COVID-19	12% testing (27 COVID-19; 50 not COVID-19)	pneumonia using CT images	classification				
Rahimzadeh et al. [77]	Iran	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com	Total 15043 chest X-ray images: 180 COVID-19, 6012 pneumonia, 8851 normal	25% training (149 COVID-19, 1634 pneumonia, 2000 normal); 75% validation (31 COVID-19, 4420 pneumonia, 6851 normal)	To detect COVID-19 on chest X-ray images	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbones	ML; DL; CNN. The CNN used was developed by concatenating the extracted features of Xception and ResNet50V2
Rajaraman and Antani [78]	USA	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Kermany et al. 2018 (pediatric chest X-ray dataset); (2) NiH chest X- ray 14 dataset; (3) CheXpert chest X- ray dataset (from Stanford Hospital, Galifornia); (4) Twitter COVID-19 chest X-ray dataset; (5) Montreal COVID-19 chest X-ray dataset	Total 15599 chest X-ray images: 314 COVID-19, 2790 pediatric bacterial pneumonia, 1493 pediatric viral pneumonia, 11002 adult pneumonia of unknown type	95.5% training (3883 pediatric data, 11002 adult pneumonia of unknown type), 4.5% testing (314 COVID-19, 380 pediatric data)	Classification of COVID-19 pneumonia as a viral pneumonia	Diagnosis of COVID-19	NA	Chest X-ray images	New model based on existing backbone	DL; CNN: Custom wide residual networt CNN model vs. the following: (1) VGG-11 (2) Inception-V3; (3) Xception; (4) DenseNet-121; (5) NasNet-mobile
Roy et al. [70]	Itały	Retrospective	Radiology	Hospital setting	Secondary dataset	Italian COVID-19 Lung Ultrasound Database (ICLUS-DB)	Total of 35 patients: 17 confirmed COVID-19, 4 suspected COVID-19, 14 without COVID-10	70% training, 30% testing	To use lung ultrasound to predict the presence or pathological artifacts and assess the asverity of COVID-19 disease according to COVID-19 Lung ultrasound according to coving system	Pathological scoring for COVID-19 pneumonia	Severity of COVID-19	Ultrasound frames	New models based on existing backbones	ML; DL; three DL models: (1) Frame- Based Score Prediction Evaluation model (formed of CNN combined with Regularized Spatial Networks and soft archinal regression; (2) video-based scon prediction evaluation model (soft ordinal regression); (3) semantic segmentation model (combination of U-ne U-net++, and Deepla v3+)
Sakagianni et at. [80]	Greece	Unnested case-control study	Radiology	Computer	Secondary dataset	COVID-CT-Dataset	Total 746 chest CT images: 349 COVID-19, 397 without COVID-19	80% training (279 COVID-19 and 317 non-COVID), 10% validation (34 COVID-19 and 39 non- COVID), 10% testing (36 COVID-19 and 41 non-COVID)	To diagnose COVID-19 pneumonia using chest CT scans	Diagnosis of COVID-19	N/A	Chest CT images	Used existing pretrained model	ML: Google AutoML Cloud Vision
Sethy and Behera [81]	India	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com; (3) Kermany et al. 2018	Total 381 chest X-ray images: 127 COVID-19, 127 pneumonia, 127 normal	80% training. 20% testing	To classify COVID-19 and pneumonia using chest X- ray images	Diagnosis of COVID-19 vs. other pneumonia classification	NA	Chest X-ray images	Used existing pretrained models	ML; DL; the following pre-trained models were extracted using SVM: (1) AlexNet; (2 Vgg16; (3) Vgg19; (4 MobileNetV2; (5) ShuffleNet; (6) Xcepton; (7) Resnet18; (8) Resnet150; (9) Resnet16; (10) Inceptioms; (11) Inceptioms; (11) Inceptioms; (11) Densnet201
							Total 133	Multiple were applied: 20% training: 80% testing, 30% training: 70% testing, 40% training: 60% testing, 50%	To classify					ML; DL; CNN multi-

Singh et al. [82]	India	Unnested case-control study	Radiology	Computer lab	Secondary dataset	Not specified	chest CT images: 68 COVID-19, 65 normal	training: 50% testing, 60% training: 40% testing, 70% training: 30% testing, 80% training: 20% testing, 90% training: 10% testing	COVID-19 using chest CT images	Diagnosis of COVID-19	N/A	Chest CT images	Developed new model	objective differential evolution (MODE)- based CNN
Song et al. [83]	China	Unnested case-control study	Radiology	Hospital	Primary dataset	(1) The first affiliated hospital to the University of Science and Technology of China; (2) The Lu'an affiliated hospital of Anhui Medical University in China	Total 201 patients: 98 COVID-9 pneumonia, 103 non- COVID pneumonia	80% training, 10% validation, 10% testing	To differentiate COVID-19 pneumonia from normal lung	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest CT images	Used existing pretrained models	ML; DL; (1) bi- directional generative adversarial network (BigBiGAN); (2) SVM (3) KNN
Toğaçar et aL.[84]	Turkey	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset: (2) Kaggle.com	Total 428 chest X-ray images: 295 COVID-19, 68 non-COVID pneumonia, 65 normal	70% training, 30% testing; k- fold cross- validation was applied as the last step.	To differentiate COVID-19 pneumonia from other pneumonia and normal lung	Diagnosis of COVID-19 and other pneumonia classification	NA	Chest X-ray images	Used existing pretrained models	ML; DL; CNN (1); MobileNet2 (2); SqueezeNet ML; SVI with stochastic gradient descent for classification
Tuncer et al. (85)	Turkey	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) GitHub.com; (2) Kaggle.com	Total 321 chest X-ray images: 67 COVID-19, 234 normal	Two experimental studies were carried out: 50% training: 50% testing. 80% testing testing.	Classification of COVID-19 vs. normal lung on chest X-ray imaging	Diagnosis of COVID-19	NA	Chest X-ray images	Developed new model	ML: residual exemplara local binar pattern-based featuri extraction (ResExLBP) with iterative relief, using five classification methods: (1) decision trees; (2) linear discriminant; (3) KNN (4) SVM; (5) subspace discriminar

Ucar et al. [86]	Turkey	Unnested case-control study	Radiology	Computer	Secondary dataset	(1) Joseph Cohen dataset; (2) Kaggle.com	Total 5949 X- ray images: 66 COVID-19, 3895 non- COVID pneumonia, 1349 normal	89% training (5310), 11% testing (639)	To provide a rapid diagnostic system able to classify visual properties on COVID-19 X- ray images	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML; DL; CNN based on the pretrained SqueezeNet model with Bayes optimization (COVIDiagnosis-Net
Vaid et al. [87]	Canada	Unnested case-control study	Radiology	Computer Iab	Secondary dataset	(1) Joseph Cohen dataset; (2) ChestX-ray8 data by Wang et al. 2017	Total 545 chest X-ray images: 181 COVID-19, 364 normal	64% training, 16% validation, 20% testing	To improve the accuracy of COVID-19 reported cases and to precisely predict the disease from chest X-ray scans	Diagnosis of COVID-19	N/A	Chest X-ray images	New model based on existing backbone	ML; DL; CNN based on pretrained VGG-1 with added multilaye perceptron
Wang et al. [88]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	(1) Renmin Hospital of Wuhan University; (2) The First Affiliated Hospital of Anhui Medical University; (3) Beijing Youan Hospital of Capital Medical University; (4) Huangshi Central Hospital; (5) The First Hospital of China Medical City; (6) Henan Provincial People's Hospital; (7) West China Hospital of Sichuan University	Total 1266 patients: 924 COVID-19 pneumonia, 271 bacterial pneumonia, 31 mycoplasma pneumonia, 11 fungal pneumonia, 14 4106 lung cancer cases (data for 471 patients was used for prognostic analysis)	56% training (709 patients), 31% validation of diagnostic performance (387), 13% validation of prognostic performance (170)	To classify COVID-19 compared to other viral pneumonia and predict the prognosis of COVID-19 patients based on CT images	Diagnosis of COVID-19	Hospital stay-	Chest CT images	New model based on existing backbones	ML: DL; two models: (1) Pretrained DenseNet121-FPN fl ung segmentation; new COVID-19 net f diagnosis analysis; DL combined with cox-proportional hazard model for predicting prognosis
Wu et al. [89]	China	Retrospective cohort	Internal medicine	Hospital- based	Primary dataset	(1) Central Hospital of Wuhan; (2) Liege, Belgium; (3) Genoa, Italy; (4) Rome, Italy; (5) Hubei province, outside Wuhan; (6) Other provinces in China; (7) Other hospitals in Wuhan	725 COVID-19 cases	From Central Hospital Wuhan: 33% training (239), 8% validation (60). From other data sources: 60% testing (426)	To assess risk severity and triage for COVID-19 patients at hospital admission based on clinical features	NA	Onset of severe or critical illness during hospitalization	Age, hospital employment, body temperature, time of onset to admission, lymphocyte proportion, neutrophil proportion, C- reactive protein, LDH, creatine kinase, urea, calcium lesion range score on CT	Developed new model	ML: logistic regression. Four models were used based on covariates selected: Model 1: Controlled for age and hospital employment. Model 3: Controlled for age, and time of onset to admission. Model 3: Controlled for age and lesion range score. Model 4: Controlled for age, score. Model 4: Controlled for age, imphocyte, C- reactive protein, LDH creatine kinase, uses and calcium
Wu et al. [90]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	(1) Renmin Hospital of Wuhan University; (2) The First Hospital of China Medical University; (3) Beijing Youan Hospital in China	Total 495 patients: 368 COVID-19 cases, 127 other pneumonia (368 COVID pneumonia, 127 other pneumonia)	80% training (395), 10% validation (50), 10% testing (50)	To use CT images for screening patients for COVID-19 pneumonia	Diagnosis of COVID-19 and other pneumonia classification	N/A	Chest CT images	New model based on existing backbone	ML: DL; multi-view fusion deep learning model based on the modification of ResNet50
									To reveal the most crucial biomarkers					

Yan et al. [91]	China	Retrospective cohort	Internal medicine	Hospital- based	Primary dataset	Tongii Hospital	Total of 485 pregnant and breastfeeding COVID-19 patients	77% training, 23% testing	distinguishing patients at imminent risk, thereby relieving the clinical burden and potentially reducing the mortality rate	N/A	Death	Lactate dehydrogenase, lymphocytes, high-sensitivity C- reactive protein	Developed new model	ML; multi-tree XGBoost model
Yang et al. [92]	China	Retrospective	Radiology	Hospital- based	Primary dataset	Shanghai Public Health Clinical Center	Total 295 patients: 149 COVID-19 cases, 149 non-COVID patients	46% braining (69 COVID-19; 66 non-COVID), 7% validation (10 COVID-19, 10 non-COVID), 24% testing (70 COVID-19, 70 non-COVID)	To detect COVID-19 features on high-resolution CT	Diagnosis of COVID-19	N/A	Chest CT images	Used existing pretrained model	ML; DL; CNN Densie Convolutional Networks (DenseNet
Yi et al. [93]	USA	Unnested case-control study	Radiology	Computer lab	Secondary dataset	(1) Radiopaedia; (2) RSNA; (3) SIRM	Total 88 COVID-19 chest X-rays	N/A	To classify COVID-19 on chest X-ray images	Diagnosis of COVID-19	N/A	Chest X-ray images	Used existing pretrained model	ML; DL; a pretrained model previously use for the classification of TB
Zhang et al. [94]	China	Unnested case-control study	Radiology	Hospital- based	Primary dataset	China Consortium of Chest CT Image Investigation (CC-CCII)	Total 2246 patienta (4695 chest CT images): 752 COVID-19 pneumonia cases, 797 other pneumonia patients, 697 normal patients	NA	To diagnose COVID-19 pneumonia and differentiate it from other pneumonia, and provide prognosis indicators for patients with COVID-19 using a combination of chest CT and clinical parameters	Diagnosis of CCV/ID-19 and dassification from other pneumonia dasses	Time from the initial hospital admission to severe or critical illness (defined by death or clinical need for mechanical ventilation or transfer to the ICU)	Chest CT images, respiratory function (oxygen saturation index and respiratory rate), age, body temperature on admission, Tmax liver biochemistry markers (albumin, serum LDH, indirect bilirubin), coagulation markers (albumin, serum LDH, indirect bilirubin), coagulation markers (albumin, serum LDH, indirect bilirubin), coagulation markers (thrombin time, activated partial thromboplastin time/APTT, plateleit count), electrolyte and acid-base bialance (Na+, K+, HCO3-), markers of inflammation (Co- resctive protein, lymphocyte count, neutrophil count)	New model based on existing backbone	For diagnosis: ML; DL; DeepLabv3 For prognosis: Regressic model - Light Gradier Boosting Machine (LightGBM)

TABLE 2: Summary of published literature involving the diagnosis or prognosis of COVID-19 from January 2020 to June 2020

Dataset breakdown = Training, validation, and testing.

N/A = Not available

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-XXXX).

References

 Rowe M: An introduction to machine learning for clinicians. Acad Med. 2019, 94:1433-6. 10.1097/ACM.00000000002792

- Dasgupta A, Nath A: Classification of machine learning algorithms. Int J Innov Res Adv Eng. 2016, 3:6-11. 10.6084/M9.FIGSHARE.3504194.V1
- Uddin S, Khan A, Hossain ME, Moni MA: Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019, 19:281. 10.1186/s12911-019-1004-8
- Cao C, Liu F, Tan H, et al.: Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics. 2018, 16:17-32. 10.1016/j.gpb.2017.07.003
- Adly AS, Adly AS, Adly MS: Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: scoping review. J Med Internet Res. 2020, 22:e19104. 10.2196/19104
- Bullock J, Luccioni A, Pham KH, et al.: Mapping the landscape of artificial intelligence applications against COVID-19. J Artif Intell Res. 2020, 69:807-845. 10.1613/jair.1.12162
- Chee ML, Ong ME, Siddiqui FJ, Zhang Z, Lim SL, Ho AF, Liu N: Artificial intelligence applications for COVID-19 in intensive care and emergency settings: a systematic review. Int J Environ Res Public Health. 2021, 18:10.3390/ijerph18094749
- Wynants L, Van Calster B, Collins GS, et al.: Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ. 2020, 369:m1328. 10.1136/bmj.m1328
- Moezzi M, Shirbandi K, Shahvandi HK, Arjmand B, Rahim F: The diagnostic accuracy of artificial intelligence-assisted CT imaging in COVID-19 disease: a systematic review and meta-analysis. Inform Med Unlocked. 2021, 24:100591. 10.1016/j.imu.2021.100591
- Kriza C, Amenta V, Zenié A, et al.: Artificial intelligence for imaging-based COVID-19 detection: systematic review comparing added value of AI versus human readers. Eur J Radiol. 2021, 145:110028. 10.1016/j.ejrad.2021.110028
- Gudigar A, Raghavendra U, Nayak S, et al.: Role of artificial intelligence in COVID-19 detection. Sensors (Basel). 2021, 21:110028. 10.3390/s21238045
- Ghaderzadeh M, Aria M, Asadi F: X-Ray equipped with artificial intelligence: changing the COVID-19 diagnostic paradigm during the pandemic. Biomed Res Int. 2021, 2021:9942873. 10.1155/2021/9942873
- Albahri OS, Zaidan AA, Albahri AS, et al.: Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J Infect Public Health. 2020, 13:1381-96. 10.1016/j.ijph.2020.06.028
- Chumbita M, Cillóniz C, Puerta-Alcalde P, et al.: Can artificial intelligence improve the management of pneumonia. J Clin Med. 2020, 9:10.3390/jcm9010248
- Ito R, Iwano S, Naganawa S: A review on the use of artificial intelligence for medical imaging of the lungs of patients with coronavirus disease 2019. Diagn Interv Radiol. 2020, 26:443-8. 10.5152/dir.2019.20294
- Guo Y, Zhang Y, Lyu T, Prosperi M, Wang F, Xu H, Bian J: The application of artificial intelligence and data integration in COVID-19 studies: a scoping review. J Am Med Inform Assoc. 2021, 28:2050-67. 10 1003/jamia/ocab098
- Syeda HB, Syed M, Sexton KW, et al.: Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med Inform. 2021, 9:e23811. 10.2196/23811
- Wang L, Zhang Y, Wang D, et al.: Artificial intelligence for COVID-19: a systematic review. Front Med (Lausanne), 2021, 8:704256. 10.3389/fmed.2021;704256
- Lalmuanawma S, Hussain J, Chhakchhuak L: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos Solitons Fractals. 2020, 139:110059. 10.1016/j.chaos.2020.110059
- Chang Z, Zhan Z, Zhao Z, et al.: Application of artificial intelligence in COVID-19 medical area: a systematic review. J Thorac Dis. 2021, 13:7034-55. 10.21037/jtd-21-747
- Dogan O, Tiwari S, Jabbar MA, Guggari S: A systematic review on AI/ML approaches against COVID-19 outbreak. Complex Intell Systems. 2021, 7:2655-78. 10.1007/s40747-021-00424-8
- Alhasan M, Hasaneen M: Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic. Comput Med Imaging Graph. 2021, 91:101933. 10.1016/j.compmedimag.2021.101933
- EndNote: accelerate your research. (2013). Accessed: April 24, 2022: https://endnote.com.
 Liberati A, Altman DG, Tetzlaff J, et al.: The PRISMA statement for reporting systematic reviews and meta-
- Liberati A, Altman DG, Tetzlari J, et al.: The PKISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009, 339:b2700. 10.1136/bmj.b2700
- Wolff RF, Moons KG, Riley RD, et al.: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019, 170:51-8. 10.7326/M18-1376
- Dabbagh R, Jamal A, Temsah M-H, et al.: Machine learning models for predicting diagnosis or prognosis of COVID- 19: a systematic review. PROSPERO. 2020, 1-7.
- Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT: New machine learning method for imagebased diagnosis of COVID-19. PLoS One. 2020, 15:e0235187. 10.1371/journal.pone.0235187
- Abdel-Basset M, Mohamed R, Elhoseny M, Chakrabortty RK, Ryan M: A hybrid COVID-19 detection model using an improved marine predators algorithm and a ranking-based diversity reduction strategy. IEEE Access. 2020. 8:79521-40.
- Ahamad MM, Aktar S, Rashed-Al-Mahfuz M, et al.: A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Syst Appl. 2020, 160:113661.
 10.1016/i eswa 2020,113661
- Albahli S: Efficient GAN-based chest radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia. Int J Med Sci. 2020, 17:1439-48. 10.7150/ijms.46684
- Apostolopoulos ID, Aznaouridis SI, Tzani MA: Extracting possibly representative COVID-19 biomarkers from x-ray images with deep learning approach and image data related to pulmonary diseases. J Med Biol Eng. 2020, 40:462-9. 10.1007/s40846-020-00529-4
- Apostolopoulos ID, Mpesiana TA: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020, 43:635-40. 10.1007/s13246-020-00865-4
- Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Comput Biol Med. 2020, 121:103795. 10.1016/j.compbiomed.2020.103795
- Avila E, Kahmann A, Alho C, Dorn M: Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios. PeerJ. 2020, 8:e9482. 10.7717/peerj.9482
- Bai HX, Wang R, Xiong Z, et al.: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology. 2020, 296:E156-65. 10.1148/radiol.2020201491
- Banerjee A, Ray S, Vorselaars B, et al.: Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. Int Immunopharmacol. 2020, 86:106705.
 10.1016/j.intimn.2020.106705
- Brinati D, Campagner A, Ferrari D, Locatelli M, Banfi G, Cabitza F: Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study. J Med Syst. 2020, 44:135. 10.1007/s10916-020-01597-4
- Brunese L, Mercaldo F, Reginelli A, Santone A: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-rays. Comput Methods Programs Biomed. 2020, 196:105608. 10.1016/j.cmpb.2020.105608

- Chaganti S, Grenier P, Balachandran A, et al.: Automated quantification of CT patterns associated with COVID-19 from chest CT. Radiol Artif Intell. 2020, 2:e200048. 10.1148/ryai.2020200048
- Cheng FY, Joshi H, Tandon P, et al.: Using machine learning to predict ICU transfer in hospitalized COVID-19 patients. J Clin Med. 2020, 9:1668. 10.3390/jcm9061668
- Civit-Masot J, Luna-Perejón F, Morales MD, Civit A: Deep learning system for COVID-19 diagnosis aid using x-ray pulmonary images. Appl Sci. 2020, 10:4640. 10.3390/app10134640
- Vieira P, Sousa O, Magalhães D, Rabêlo R, Silva R: Detecting pulmonary diseases using deep features in xray images. Pattern Recognit. 2021, 119:108081. 10.1016/j.patcog.2021.108081
- Das D, Santosh KC, Pal U: Truncated inception net: COVID-19 outbreak screening using chest x-rays. Phys Eng Sci Med. 2020, 43:915-25. 10.1007/s13246-020-00888-x
- 44. El Asnaoui K, Chawki Y: Using x-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn. 2021, 39:3615-26. 10.1080/07391102.2020.1767212
- 45. Fang M, He B, Li L, et al.: CT radiomics can help screen the coronavirus disease 2019 (COVID-19): a preliminary study. 2020, 63:172103. 10.1007/s11432-020-2849-3
- Fayyoumi E, Idwan S, and Heba A: Machine learning and statistical modelling for prediction of novel COVID-19 patients case study: Jordan. Int J Adv Comut Sci Appl. 2020, 11:122-126. 10.14569/IJACSA.2020.0110518
- Fu L, Li Y, Cheng A, Pang P, Shu Z: A novel machine learning-derived radiomic signature of the whole lung differentiates stable from progressive COVID-19 infection: a retrospective cohort study. J Thorac Imaging. 2020, 35:361-8. 10.1097/RTI.00000000000544
- Hasan AM, Al-Jawad MM, Jalab HA, Shaiba H, Ibrahim RW, Al-Shamasneh AR: Classification of COVID-19 coronavirus, pneumonia and healthy lungs in CT scans using Q-deformed entropy and deep learning features. Entropy (Basel). 2020, 22:517. 10.3390/e22050517
- Hurt B, Kligerman S, Hsiao A: Deep learning localization of pneumonia: 2019 coronavirus (COVID-19) outbreak. J Thorac Imaging. 2020, 35:W87-9. 10.1097/RTI.00000000000512
- Jaiswal A, Gianchandani N, Singh D, Kumar V, Kaur M: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J Biomol Struct Dyn. 2021, 39:5682-9. 10.1080/07391102.2020.1788642
- Jehi L, Ji X, Milinovich A, et al.: Individualizing risk prediction for positive coronavirus disease 2019 testing: results from 11,672 patients. Chest. 2020, 158:1364-75. 10.1016/j.chest.2020.05.580
- Jiang X, Coffee M, Bari A, et al.: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Computers, Materials & Continua. 2020, 63:537-551. 10.32604/cmc.2020.010691
- Kang H, Xia L, Yan F, et al.: Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multiview representation learning. IEEE Trans Med Imaging. 2020, 39:2606-14. 10.1109/TMI.2020.2992546
- Khan AI, Shah JL, Bhat MM: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed. 2020, 196:105581. 10.1016/j.cmpb.2020.105581
- Khuzani AZ, Heidari M, Shariati SA: COVID-classifier: an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. Sci Rep. 2021, 11:9887. 10.1038/s41598-021-88807-2
- Ko H, Chung H, Kang WS, et al.: COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation. J Med Internet Res. 2020, 22:e19569. 10.2196/19569
- Li L, Qin L, Xu Z, et al.: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020, 296:E65-71. 10.1148/radiol.2020200905
- Li MD, Arun NT, Gidwani M, et al.: Automated assessment and tracking of COVID-19 pulmonary disease severity on chest radiographs using convolutional siamese neural networks. Radiol Artif Intell. 2020, 2:e200079. 10.1148/ryai.2020200079
- Liang W, Yao J, Chen A, et al.: Addendum: early triage of critically ill COVID-19 patients using deep learning. Nat Commun. 2021, 12:826. 10.1038/s41467-021-21044-3
- Liu F, Zhang Q, Huang C, et al.: CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020, 10:5613-22. 10.7150/thno.45985
- Liu Y, Wang Z, Ren J, et al.: A COVID-19 risk assessment decision support system for general practitioners: design and development study. J Med Internet Res. 2020, 22:e19786. 10.2196/19786
- Loey M, Florentin S, Khalifa NEM: Within the lack of chest COVID-19 x-ray dataset: a novel detection model based on gan and deep transfer learning. Symmetry. 2020, 12:651. 10.3390/sym12040651
- Ai T, Yang Z, Hou H, et al.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020, 296:E32-40. 10.1148/radiol.2020200642
- Mahmud T, Rahman MA, Fattah SA: CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020, 122:103869. 10.1016/j.compbiomed.2020.103869
- Matos J, Paparo F, Mussetto I, et al.: Evaluation of novel coronavirus disease (COVID-19) using quantitative lung CT and clinical data: prediction of short-term outcome. Eur Radiol Exp. 2020, 4:39. 10.1186/s41747-020-00167-0
- Mei X, Lee HC, Diao KY, et al.: Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020, 26:1224-8. 10.1038/s41591-020-0951-3
- Murphy K, Smits H, Knoops AJ, et al.: COVID-19 on chest radiographs: a multireader evaluation of an artificial intelligence system. Radiology. 2020, 296:E166-72. 10.1148/radiol.2020201874
- Das NN, Kumar N, Kaur M, Kumar V, Singh D: Automated deep transfer learning-based approach for detection of COVID-19 infection in chest x-rays. Ing Rech Biomed. 2022, 43:114-9. 10.1016/j.irbm.2020.07.001
- Ni Q, Sun ZY, Qi L, et al.: A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol. 2020, 30:6517-27. 10.1007/s00330-020-07044-9
- Obeid JS, Davis M, Turner M, Meystre SM, Heider PM, O'Bryan EC, Lenert LA: An artificial intelligence approach to COVID-19 infection risk assessment in virtual visits: a case report. J Am Med Inform Assoc. 2020, 27:1321-5. 10.1093/jamia/ocaa105
- Oh Y, Park S, Ye JC: Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020, 39:2688-700. 10.1109/TMI.2020.2995291
- Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U: Automated detection of COVID-19 cases using deep neural networks with x-ray images. Comput Biol Med. 2020, 121:103792. 10.1016/j.compbiomed.2020.103792
- Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V: Application of deep learning for fast detection of COVID-19 in x-rays using nCOVnet. Chaos Solitons Fractals. 2020, 138:109944. 10.1016/j.chaos.2020.109944
- 74. Pathak Y, Shukla PK, Tiwari A, Stalin S, Singh S, Shukla PK: Deep transfer learning based classification model for COVID-19 disease. Ing Rech Biomed. 2022, 43:87-92. 10.1016/j.irbm.2020.05.003
- Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YM: COVID-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed. 2020, 194:105532. 10.1016/j.cmpb.2020.105532

- Pu J, Leader J, Bandos A, et al.: Any unique image biomarkers associated with COVID-19? . Eur Radiol. 2020, 30:6221-7. 10.1007/s00330-020-06956-w
- Rahimzadeh M, Attar A: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest x-ray images based on the concatenation of Xception and ResNet50V2. Inform Med Unlocked. 2020, 19:100360. 10.1016/j.imu.2020.100360
- Rajaraman S, Antani S: Weakly labeled data augmentation for deep learning: a study on COVID-19 detection in chest x-rays. Diagnostics (Basel). 2020, 10:10.3390/diagnostics10060358
- Roy S, Menapace W, Oei S, et al.: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans Med Imaging. 2020, 39:2676-87. 10.1109/TMI.2020.2994459
- Sakagianni A, Feretzakis G, Kalles D, Koufopoulou C, Kaldis V: Setting up an easy-to-use machine learning pipeline for medical decision support: a case study for COVID-19 diagnosis based on deep learning with CT scans. Stud Health Technol Inform. 2020, 272:13-6. 10.3233/SHT1200481
- Sethy PK, Behera SK: Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Int J Math Eng Manag Sci. 2020, 5:643-651, 10.20944/preprints/02003.0300 v1
- Singh D, Kumar V, Vaishali, Kaur M: Classification of COVID-19 patients from chest CT images using multiobjective differential evolution-based convolutional neural networks. Eur J Clin Microbiol Infect Dis. 2020, 39:1379-89. 10.1007/s10096-020-03901-z
- Song J, Wang H, Liu Y, et al.: End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT. Eur J Nucl Med Mol Imaging. 2020, 47:2516-24. 10.1007/s00259-020-04929-1
- Toğaçar M, Ergen B, Cömert Z: COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest x-ray images using fuzzy color and stacking approaches. Comput Biol Med. 2020, 121:103805. 10.1016/j.compbiomed.2020.103805
- Tuncer T, Dogan S, Ozyurt F: An automated residual exemplar local binary pattern and iterative ReliefF based COVID-19 detection method using chest x-ray image. Chemometr Intell Lab Syst. 2020, 203:104054. 10.1016/j.chemolab.2020.104054
- Ucar F, Korkmaz D: COVIDiagnosis-Net: deep bayes-squeezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from x-ray images. Med Hypotheses. 2020, 140:109761. 10.1016/j.mehy.2020.109761
- Vaid S, Kalantar R, Bhandari M: Deep learning COVID-19 detection bias: accuracy through artificial intelligence. Int Orthop. 2020, 44:1539-42. 10.1007/s00264-020-04609-7
- Wang S, Zha Y, Li W, et al.: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 2020, 56:10.1183/13993003.00775-2020
- Wu G, Yang P, Xie Y, et al.: Development of a clinical decision support system for severity risk prediction and triage of COVID-19 patients at hospital admission: an international multicentre study. Eur Respir J. 2020, 56:2001104. 10.1183/13993003.01104-2020
- Wu X, Hui H, Niu M, et al.: Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Eur J Radiol. 2020, 128:109041. 10.1016/j.ejrad.2020.109041
- Yan L, Zhang HT, Goncalves J, et al.: An interpretable mortality prediction model for COVID-19 patients. Nature Machine Intelligence. 2020, 2:283-288. 10.1101/2020.06.14.20130732
- Yang S, Jiang L, Cao Z, et al.: Deep learning for detecting corona virus disease 2019 (COVID-19) on highresolution computed tomography: a pilot study. Ann Transl Med. 2020, 8:450. 10.21037/atm.2020.03.132
- Yi PH, Kim TK, Lin CT: Generalizability of deep learning tuberculosis classifier to COVID-19 chest radiographs: new tricks for an old algorithm?. J Thorac Imaging. 2020, 35:W102-4. 10.1097/RTI.00000000000532
- Zhang K, Liu X, Shen J, et al.: Clinically applicable ai system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell. 2020, 181:1423-1433.e11, 10.1016/j.cell.2020.04.045
- Cohen JP, Morrison P, Dao L: COVID-19 image data collection. arXiv:2003.11597. 2020, 10.48550/arXiv.2003.11597
- 96. Kaggle. (2022). Accessed: April 24, 2022: https://www.kaggle.com/.
- Ahuja AS, Reddy VP, Marques O: Artificial intelligence and COVID-19: a multidisciplinary approach. Integr Med Res. 2020, 9:100434. 10.1016/j.imr.2020.100434
- Arora N, Banerjee AK, Narasu ML: The role of artificial intelligence in tackling COVID-19. Future Virol. 2020, 15:717-24. 10.2217/fvl-2020-0130
- 99. Narin A: Accurate detection of COVID-19 using deep features based on x-ray images and feature selection methods. Comput Biol Med. 2021, 137:104771. 10.1016/j.compbiomed.2021.104771
- Hariri W, Narin A: Deep neural networks for COVID-19 detection and diagnosis using images and acousticbased techniques: a recent review. Soft comput. 2021, 25:15345-62. 10.1007/s00500-021-06137-x
 Shuia I, Alanazi E, Alasmary W, Alashaikh A: COVID-19 open source data sets: a comprehensive survey.
 - Shuja J, Alanazi E, Alasmary W, Alashaikh A: COVID-19 open source data sets: a comprehensive survey. Appl Intell (Dordr). 2021, 51:1296-325. 10.1007/s10489-020-01862-6
- Temsah MH, Jamal A, Al-Tawfiq JA: Reflection with ChatGPT about the excess death after the COVID-19 pandemic. New Microbes New Infect. 2023, 52:101103. 10.1016/j.nmni.2023.101103
- Kaneda Y, Tsubokura M, Ozaki A, Saito H, Tanimoto T: Are the issues pointed out by ChatGPT can be applied to Japan? - examining the reasons behind high COVID-19 excess deaths in Japan. New Microbes New Infect. 2023, 53:101116. 10.1016/j.nmni.2023.101116
- 104. Temsah O, Khan SA, Chaiah Y, et al.: Overview of early chatgpt's presence in medical literature: insights from a hybrid literature review by chatgpt and human experts. Cureus. 2023, 15:e37281. 10.7759/cureus.37281
- Malli, Sircar, Bhat, et al.: How artificial intelligence may help the Covid-19 pandemic: Pitfalls and lessons for the future. Rev Med Virol. 2021, 31:1-11. 10.1002/rmv.2205
- Almazyad M, Aljofan F, Abouammoh N A, et al.: (April 28, 2023) Enhancing Expert Panel Discussions in Pediatric Palliative Care: Innovative Scenario Development and Summarization With ChatGPT-4. Cureus. 15:38249. 10.7759/cureus.38249