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Abstract
Pain, the primary symptom of osteoarthritis (OA), reduces both the quality and quantity of life for patients.
The pathophysiology of OA pain is complex and often difficult to explain solely by radiological structural
changes. One reason for this discrepancy is pain sensitization (peripheral sensitization [PS] and central
sensitization [CS]) in OA. Thus, an understanding of pain sensitization is important when considering
treatment strategies and development for OA pain. In recent years, pro-inflammatory cytokines, nerve
growth factors (NGFs), and serotonin have been identified as causative agents that induce peripheral and
central sensitization and are becoming therapeutic targets for OA pain. However, the characteristics of the
clinical manifestations of pain sensitization elicited by these molecules remain unclear, and it is not well
understood who among OA patients should receive the therapeutic intervention. Thus, this review
summarizes evidence on the pathophysiology of peripheral and central sensitization in OA pain and the
clinical features and treatment options for this condition. While the majority of the literature supports the
existence of pain sensitization in chronic OA pain, clinical identification and treatment of pain sensitization
in OA are still in their infancy, and future studies with good methodological quality are needed.
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Introduction And Background
Osteoarthritis (OA), the most common form of arthritis, is a painful chronic disease of the synovial joints.
Chronic pain and its related symptoms in OA reduce both the quantity and quality of life [1,2].
Understanding OA pain is hindered by the fact that it can be intense or chronic, regardless of the degree of
structural change. Indeed, several studies report that the association between radiographic structural
changes and pain levels in OA is poor [3,4]. OA pain is subjective, involving both peripheral and central
neural mechanisms, which are modulated not only by a wide range of neurochemical factors but additionally
by environmental, psychological, and genetic factors [5-7]. Nevertheless, the mechanisms of OA pain are not
well understood.

Pain sensitization is considered a key process in chronic pain conditions that are characterized by
exaggerated responses to innocuous or only mildly noxious stimuli (hyperalgesia and allodynia) [8]. Two
types of sensitization (peripheral sensitization [PS] and central sensitization [CS]) have been reported to
affect chronicity and treatment resistance in OA pain [4,5,8-10]. PS is described as the hyperexcitability of
peripheral nociceptors and is considered largely due to the effects of neurotrophins and pro-inflammatory
molecules in promoting nociceptor depolarization [11,12]. CS by comparison, results from a continuous
nociceptive input that occurs as hyperexcitability of wide dynamic range neurons in the dorsal horn (DH)
[13]. More understanding of the pathophysiology of pain sensitization in OA may aid in the development of
therapies that are better targeted at the direct mechanisms of pain.

Recent evidence suggests that pro-inflammatory cytokines, nerve growth factor (NGF), and serotonin are
therapeutic targets for OA pain with PS and CS. This review aims to describe in detail the role of these
factors in the mechanisms of pain sensitization, from PS to CS in OA.

Review
Peripheral sensitization in OA
Joint nociceptors are normally inactive but become active during arthritis due to cartilage damage or
synovitis. These act to intensify joint pain [14]. In affected synovial tissues, the nociceptive system enters a
state of hyperexcitability and can be activated by what are otherwise normal or usually innocuous or mild
irritations [15]. Nociceptors in intra-articular tissues are known to be sensitized in electro-physiological
studies in OA models in rats and guinea pigs [16,17]. Increased afferent nerve firing rate was observed in a
monosodium iodoacetate (MIA)-induced OA model in rats [16]. Afferent nerve firing rate increased with
aging in a guinea pig model of spontaneous OA [17]. Also, the mechanical threshold required to activate the
afferent nerve fibers was significantly higher in aged guinea pigs compared to younger animals [17].
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Inflammation-associated molecules, such as prostaglandins, bradykinin, tumor necrosis factor (TNF)-α,
interleukin (IL)-1β, IL-6, damage-associated molecular patterns (DAMPs) are thought to ligate to sensory
nerve fibers via transient receptor potential (TRP) channels and sodium channels. This translates into a
lower excitation threshold on high-threshold neurons, making joint nociceptors more likely to fire in
response to painful stimuli, both noxious and non-noxious [18]. The signals then course via ascending
pathways to high central nervous system (CNS) centers and are there interpreted as pain and assigned
affective qualities [19]. An overview of the signaling pathways of PS in OA is indicated in Figure 1.

FIGURE 1: Peripheral sensitization and central sensitization
Mediators (inflammatory cytokines, pain-related molecules) released form joint tissues activate peripheral nerve
terminals of nociceptor neurons (peripheral sensitization). Persistent pain or inflammation causes activation and
repetitive firing in afferent C-fiber nociceptors, which triggers the release of neurotransmitter in the synapse of the
dorsal horn (central sensitization). Glutamate, ATP, substance P (SP), and cytokines from DRG central terminals
mediate neurotransmission to second-order postsynaptic neurons that relay signals to the brain.

Central sensitization in OA
CS is defined as the elevated responsiveness of nociceptive neurons in the CNS to normal or subthreshold
afferent inputs as a result of CNS plasticity [20]. An increase in spontaneous neuronal activity causes pain
hypersensitivity by lowering activation thresholds and expanding the receptive field [9]. Pain
hypersensitivity includes both hyperalgesia - an increased sensitivity to noxious stimuli- and allodynia -
pain as a response to normally innocuous stimuli [21-23]. The mechanism of CS includes excessive
nociceptive ascending (sensory) signaling and insufficient inhibitory descending signaling. This facilitation
is maintained by peripheral nociceptive input arising from the OA joint itself [24]. DH of the spinal cord is
where ascending pathways arise, where they synapse with interneurons or projection neurons that have
synapsed with primary afferents. A pain signal is transmitted through these ascending pathways to the
hypothalamus, thalamus, brainstem, amygdala, and prefrontal cortex [25]. An overview of the signaling
pathways of CS in OA is indicated in Figure 1.

Molecules involved in PS and CS in OA
Pro-inflammatory Cytokines

TNF-α, IL-1β, and IL-6 are potent pro-inflammatory cytokines exerting pleiotropic effects on various cell
types and play a critical role in the pathogenesis of chronic inflammatory diseases, such as OA and
rheumatoid arthritis (RA). These molecules are released into the joint, and synovial inflammation is
associated with pain in OA [26,27]. These cytokines facilitate the firing of joint nociceptors, leading to
nociception and the initiation of OA pain [12,28-30]. In a study of rat models, intraarticular TNF-α injection
resulted in persistent sensitization of nociceptive Aδ- and C-fibers, which lead to hyperalgesia and
mechanical allodynia [12]. It has been suggested that IL‐1β and IL-6 also activate or sensitize nociceptors
[29,30]. Furthermore, in animal models of chronic inflammation, primary afferents in the DRG and post-
nodal sympathetic fibers were reported to exhibit a neuropathy-like phenotype, with increased sprouting to
the affected area and to the DRG itself [31]. Lee et al. revealed that elevated serum IL-6 levels are associated
with low-pressure pain thresholds (PPTs) taken at sites remote to the affected joint and high suprathreshold
heat pain ratings [32]. Leung et al. reported that concentrations of TNF-α, IL-6, and IL-8 are associated with
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pain on movement, with only TNF-α being involved in the exacerbation of the pain at rest, which is
characteristic of sensitized pain in the synovial fluid of knee OA (KOA) [33]. Further, it is known that these
pro-inflammatory cytokines are primarily expressed by synovial monocytes and macrophages in OA joints
[34-36]. Further, CD14-positive macrophages regulate NGF via pro-inflammatory cytokine production in the
synovial membrane of KOA [34-36]. Synovial CD163 mRNA expression is positively correlated with pain at
rest, while CD163+CD14 low macrophages expressing TNF-α might be a major contributor to hip OA (HOA)
pain [34]. Considering the evidence, elevated synovial fluid and serum levels of pro-inflammatory cytokines
in OA patients might directly trigger PS and contribute to CS.

Nerve Growth Factor

The pronociceptive functions necessarily involved in the pathogenesis of pain include PS and CS, and
enhanced local neuronal sprouting at sites of inflammation, within the dorsal root ganglion (DRG), and
possibly also within the DH [25]. NGF is associated with these functions. NGF is the founding member of the
neurotrophin family of growth factors, which are responsible for the survival, growth, and developmental
plasticity of neurons in the peripheral and CNS in vertebrates [37,38]. NGF is produced by chondrocytes,
synovial macrophages, and fibroblasts in the osteoarthritic joint [35,39,40]. NGF production was stimulated
by transforming growth factor (TGF)-β in osteoarthritic chondrocytes [39]. Synovial fibroblast had higher
NGF production ability compared to macrophages following TNF-α stimulation [35,40]. CD14high positive
cells had higher NGF expression compared to CD14low cells in HOA [41]. It binds tropomyosin-related kinase
A (TrkA), which is expressed in a range of sensory and sympathetic fibers and regulates their survival [42].
TrkA-positive cells account for about 40% of neurons in the DRG. They include thin myelinated Aδ fibers
and peptidergic unmyelinated C fibers, both of which innervate multiple tissues [42,43]. The binding of NGF
to TrkA on the peripheral terminals of nociceptors and the surface of immune cells may directly play a role
in acute PS [42]. NGF/TrkA complex leads to signaling that upregulates the local expression and activation of
pronociceptive channels/receptors (Na/Ca/K channels, bradykinin receptors, cation channels, and acid-
sensing ion channels) [44-47]. Bradykinin B2 receptor expression was elevated by NGF in mouse DRG culture
[44]. The calcium current density increased in cultured embryonic basal forebrain neurons following NGF
treatment [48]. NGF directly enhances acid-sensing ion channel 3 encoding genes in DRG neurons [47]. This
triggers the sensitization of the nociceptor, resulting in a condition of PS. NGF may contribute indirectly to
CS through its downstream influence on transcription. The NGF/TrkA complex is transported retrogradely to
neuronal cell bodies in the DRG. The NGF/TrkA signal in turn drives the synthesis of pronociceptive
components (brain-derived neurotrophic factor [BDNF], calcitonin gene-related peptide [CGRP], and
substance P [SP]) [48-51]. BDNF activates spinal microglia and contributes to the induction and maintenance
of the CS [52]. SP and CGRP are released from the peripheral endings of sensory neurons, which contribute
to the development of neurogenic inflammation, while SP and CGRP are released from the central termini of
sensory neurons, which contribute to enhanced nociception and the buildup of CS [50]. Neuronal
sensitization mediated by NGF/TrkA increases nociceptive signaling through the DH and supraspinal
structures [42]. The overall effect is the condition of CS.

The release of NGF during cartilage degradation, bone remodeling, and synovial inflammation appears to
play a pivotal role in the mechanical hyperalgesia that occurs in OA patients with pain symptoms. Results in
models are illustrative: in one rat model, systemic administration of NGF caused mechanical and thermal
hyperalgesia [53], while in rat models of OA, intra-articular injection of NGF produced a decrease in the hind
paw mechanical withdrawal threshold in one [54] and contributed to spinal nociceptive sensitization in
another [55]. Our previous study described a positive correlation between expression levels of NGF mRNA in
the synovial membrane and scores for the central sensitization inventory (CSI) and pain in patients with
HOA [41]. These findings support previous evidence that monoclonal antibodies against NGF reduce pain
symptoms from OA [56-58]. However, evidence for a direct association between PS and CS in human OA and
NGF levels in intra-articular tissues such as synovial membrane, synovial fluids, cartilage, etc. is lacking, and
further study is required.

Serotonin

In order to modulate spinal nociceptive processing and modulate the descending pain responses,
monoaminergic signaling is involved in the process, which originates from the midbrain, the medullary
structures, and the subnucleus reticularis dorsalis [59]. Serotonin modulatory effects on pain are complex
and dependent on various receptor subtypes being activated. It appears that alterations in serotonergic
activity have led to a greater degree of CS. There are several models of persistent neuropathic and
inflammatory pain that show upregulated 5-HT receptors in the CNS in models that are driven by pain
facilitators such as 5-HT2A receptors [60,61]. It is also known that neuropathic pain models display
maladaptive dopaminergic neuroplastic changes, such as a decrease in the expression of D2 receptors in the
nucleus accumbens, in addition to these analgesic effects [62]. A variety of persistent pain conditions can be
effectively treated with analgesia using drugs that target and improve these monoaminergic systems, such
as amitriptyline and serotonin noradrenaline reuptake inhibitors. A higher level of serotonin and dopamine
metabolites in the cerebrospinal fluid of OA patients with disabling pain has been associated with increased
pain severity and CS [63]. The evidence provided here underlines the fact that CNS monoaminergic activity
plays a significant role in the pain processes associated with OA.
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Clinical characteristics of sensitized pain in OA
Pain sensitization in people with OA has been assessed using a variety of measures. It is common to perform
quantitative sensory testing (QST) as a method of assessment, utilizing standardized mechanical, thermal,
or electrical test modalities to assess sensitivity to noxious or innocuous stimuli [64,65]. In a systematic
review, PPT data were analyzed in comparison with healthy controls for people with OA. According to the
study, pain sensitization was evident at affected and remote anatomical test sites for people with OA [66]. In
addition, Lundblad et al. demonstrated that total knee arthroplasty (TKA) for KOA was not always followed
by a complete resolution of pain symptoms [67]. Of note, the risk of persistent pain after TKA was increased
in subjects with high pre-operative pain scores and low pre-operative local PPTs. In the study using the QST,
the purpose was essential to assess the association between the level of the QST and the Western Ontario
and McMaster Universities Osteoarthritis Index (WOMAC) post-operative pain after the surgery [68]. The
high QST group had more severe WOMAC pain after the surgery at one year compared to the low QST group
[68].

In recent years, CS was also assessed by the CSI in patients with OA [69]. This questionnaire, which was
designed to evaluate the symptoms associated with CS, includes 25 self-reported items on somatic and
emotional symptoms, each of which is scored between 0 and 100 points, with 0 and 100 being the best and
worst scores, respectively. According to a 5-point Likert scale, each of the items was graded on a scale of 0 =
never, 1 = rarely, 2 = sometimes, 3 = often, and 4 = always. There has been a significant impact on post-
operative pain residuals as well as a decrease in satisfaction with CS in studies evaluated by CSI [70-72]. Our
previous study suggested that the pre-operative CSI score was negatively correlated with pain and
satisfaction scores at 12 months after surgery in patients undergoing total hip arthroplasty (THA) for HOA
[70]. Further, a high pre-operative CSI score (>40) is reported to negatively impact post-operative residual
pain and satisfaction, as well as the quality of life in patients who underwent TKA for KOA [71,72].

Several studies have described characteristic pain symptoms for detecting sensitized pain. One of these is
expanded pain in KOA and HOA. Willett et al. described that expanded pain - assessed by digital pain
drawings - was significantly associated with lower PPTs at the thenar eminence, vastus lateralis, and greater
trochanter in patients with HOA [73]. Lluch et al. noted that in patients with KOA, the area of expanded pain
was associated with lower PPT at the epicondyle and knee and higher CSI scores [74]. Pain at rest is another
characteristic of sensitized pain. Satake et al. revealed that the degree of resting pain assessed with a visual
analog scale (VAS) was associated with local PPT compared with walking pain in KOA patients [75]. We have
reported that VAS resting pain positively correlated with CSI score in patients with HOA [76]. One study
suggested that nocturnal pain in KOA is a characteristic symptom of sensitized pain. Sasaki et al. reported
that the disability and prevalence of nocturnal pain were higher in KOA patients with CS than in those with
non-CS, and found a positive correlation between CSI score and sleep quality determined with the
Pittsburgh sleep quality index [77]. These clinical characteristics of sensitized pain are thought to be caused
by pathologies of PS and CS.

Treatments for OA pain related to PS and CS
There are several pharmacologic therapies that have the potential to improve OA pain related to PS and CS.

Anti-Inflammatory Cytokine Drugs

Several studies indicated the efficacy and safety of anti-inflammatory cytokine drugs such as human TNF-α
or IL-6 monoclonal antibodies for rheumatic diseases, such as RA [78,79]. The evidence on the effectiveness
of these drugs for OA pain is limited. A meta-analysis suggested that etanercept and infliximab were
superior to placebo for pain in KOA, and infliximab was superior to the other biologic agents (adalimumab,
anakinra, canakinumab, etanercept, naproxen, and tocilizumab) in improving pain in the hands and knees of
OA [80]. In contrast, several clinical trials have been reported that specifically for OA of the hand, none seem
to have shown the efficacy of a monoclonal antibody against TNF-α and IL-6 [81-83]. However, there were
no ongoing trials using anti-inflammatory cytokine drugs for OA pain on clinicaltrials.gov.

Tanezumab

Tanezumab is a monoclonal antibody against NGF, which reduces pain symptoms more effectively than
other analgesics in moderate-to-severe KOA and HOA [57,84,85]. In a short-term study of KOA and HOA,
tanezumab by intravenous administration produced a greater improvement in pain and function than
NSAIDs and opioids [85]. A recent phase III randomized controlled trial demonstrated long-term efficacy on
subcutaneous administration compared with non-steroidal anti-inflammatory drugs (NSAIDs) in patients
with moderate or severe HOA or KOA [84]. However, test group patients were at increased risk of abnormal
peripheral sensation and rapidly progressive joint damage compared to the control groups [57,84-86]. NGF
inhibitors may effectively improve pain symptoms in OA patients, but the reason why blocking NGF leads to
rapid OA progression warrants careful examination.

Duloxetine
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Duloxetine, a potent and selective serotonin-norepinephrine reuptake inhibitor, has attracted attention as a
potentially useful analgesic for sensitized pain in OA [87]. In RCTs, this agent, which facilitates descending
inhibitory pain pathways in the CNS [88], reduced pain and improved function and QOL in patients with KOA
and HOA [89-91]. In their 10-week double-blind RCT in patients with severe KOA, Frakes et al. revealed that
the addition of duloxetine to oral NSAID therapy offered significant additional pain reduction than NSAIDs
alone [92]. Interestingly, pre-operative administration of duloxetine also seems to improve residual pain in
the early post-operative period after arthroplasty. Among patients with CS (CSI scores ≥40) and severe KOA,
Koh et al. reported that patients receiving duloxetine from the day before surgery to six weeks after surgery
had greater pain reduction in the initial 2- to 12-week post-operative period than control patients (no
duloxetine) [93]. Future studies should focus on assessing the long-term safety of duloxetine.

Drugs in the ongoing clinical trial phase for OA pain related to PS and
CS
There are several drugs with potential future applications for OA pain that are currently in clinical trials
(phase II or phase III) (Table 1). This section includes some drugs that target the cannabinoid receptor,
TRPV1, and bradykinin B2 receptor in the clinical trial phase registered on www.clinicaltrials.gov for
treating OA.

Target Drug Mechanism of action Phase NCT Status Sponsor/Collaborators

Cannabinoid

receptors

Cannabidiol

Cannabinoid receptor

agonists
Ⅱ

NCT04992624 Recruiting
Richard Harris National Center for Complementary and Integrative Health National Institution Drug Abuse

University of Michigan

Cannabidiol and

Cannabinol
NCT04992962 Recruiting Pure Green

LY2828360 NCT01319929 Completed Eli Lilly and Company

TRPV1

RTX-GRT7039

TRPV1 agonist

Ⅲ

NCT05248386
Not yet

recruiting

Grünenthal GmbHNCT05449132
Not yet

recruiting

NCT05377489
Not yet

recruiting

Resiniferatoxin Ⅱ NCT04885972
Active, not

recruiting
Sorrento Therapeutics, Inc.

Bradykinin B2

receptor

Icatibant

B2 receptor antagonist Ⅱ

NCT00303056 Completed Sanofi

Fasitibant

NCT01091116 Completed Menarini Group

NCT02205814 Completed  

TABLE 1: Drugs in the ongoing clinical trials for osteoarthritis pain related to peripheral and
central sensitization

Drugs targeting the cannabinoid receptors
The cannabinoid receptors CB1 and CB2 belong to the family of G-protein-coupled receptors and bind
exogenous ligands derived from Cannabis sativa as well as endogenous arachidonic-derived ligands. CB2
receptors are primarily expressed in cells of the immune system, including macrophages, and regulate the
pro-inflammatory response in various settings [94]. CB2-selective agonists display anti-nociceptive activity
in well-validated models of persistent inflammatory pain and neuropathic pain [95]. However, placebo-
controlled RCTs indicated that LY2828360, the CB2-selective agonist, lacked both toxicity and efficacy for
suppressing KOA pain (clinicaltrials.gov identifier: NCT01319929). Two RCTs in phase II with cannabidiol
and cannabinol are currently ongoing for KOA pain (clinicaltrials.gov identifiers: NCT04992624,
NCT04992962).

Drugs targeting the TRPV1
The TRP superfamily of ion channels comprises proteins with six transmembrane domains and cytoplasmic
N- and C-termini. TRP proteins assemble as homo- or heterotetramers to form cation-permeable ion
channels. Twenty-eight TRP channels have been discovered in mammals based on their sequence homology,
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are classified into six subfamilies [96]. The vanilloid receptor TRPV1 is a homo-tetrameric, non-selective
cation channel abundantly expressed in the nociceptors [97]. TRPV1 is considered a validated target for OA
pain treatment because its agonists, such as capsaicin, cause desensitization of TRPV1 channels that reduce
pain levels in preclinical species, and its antagonists also reduce pain levels in rodent models of OA [98,99].

A recent potential advance in OA pain management is the development of an intra-articular capsaicin
formulation, thereby overcoming the likely limited permeability of topical capsaicin into the knee joint
[100]. A capsaicin injection into the knee joint was well tolerated and provided dose-dependent
improvement in knee OA pain with walking [100]. Currently, two intra-articular injection agents, TRPV1
agonists, are in clinical trials of phases Ⅲ and Ⅱ for patients with KOA (clinicaltrials.gov identifiers: RTX-
GRT7039, NCT05248386, NCT05449132, and NCT05377489; Resiniferatoxin, NCT04885972). Further
elucidation of the analgesic efficacy and safety of TRPV1 agonists should lead to effective non-opioid
analgesic options.

Drugs targeting the bradykinin B2 receptor
Bradykinin is known to have potent pro-inflammatory effects and is one of the most potent endogenous
algogenic peptides. This peptide is formed in plasma and inflamed tissues and, by activating the G-protein-
coupled receptor, B2 receptor, promotes the activation of nociceptive neurons [44]. Further, elevated
bradykinin levels have been demonstrated in the synovial fluid of patients with OA [101]. Thus, bradykinin is
an endogenous pro-inflammatory molecule that is associated with the pathophysiology of OA, and B2
receptor antagonists are believed to be considered as a potential symptomatic therapy for this disease.
Icatibant and Fasitibant, which are B2 receptor antagonists, have been carried out in phase II of the clinical
trials (clinicaltrials.gov identifiers: Icatibant, NCT00303056; Fasitibant, NCT01091116; and NCT02205814).
However, no direct evidence of efficacy seems to be indicated. There is a need for further clinical trials to
better explain the mechanisms of action and the efficacy and tolerability of the B2 receptor antagonists in
OA.

Conclusions
In this review, we reported findings on the pathophysiology of PS and CS in OA pain and the clinical features
and treatment of sensitized pain. Considering the pathophysiology of sensitized pain in OA and the complex
clinical features associated with it, accelerating the development of new therapies is important.

Several drugs have been tested in clinical trials to improve sensitized pain caused by OA. Among them,
duloxetine appears to be highly efficacious and safe for sensitized pain in OA. Additionally, some drugs
targeting cannabinoid receptors, TRPV1 receptors, and bradykinin B2 receptors are currently being tested in
clinical trials for the treatment of OA pain caused by PS or CS. These drug targets have the potential to
provide better results in alleviating OA pain since they are involved in the pathogenesis of PS and CS.
Treatments for sensitized pain in OA are still in their infancy, however, and additional basic and clinical
investigations are needed.
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